간행물

한국정보처리학회> 정보처리학회논문지. 소프트웨어 및 데이터 공학

정보처리학회논문지. 소프트웨어 및 데이터 공학 update

KIPS Transactions on Software and Data Engineering

  • : 한국정보처리학회
  • : 공학분야  >  전자공학
  • : KCI등재
  • :
  • : 연속간행물
  • : 월간
  • : 2287-5905
  • :
  • :

수록정보
수록범위 : 1권1호(2012)~7권3호(2018) |수록논문 수 : 441
정보처리학회논문지. 소프트웨어 및 데이터 공학
7권3호(2018년 03월) 수록논문
최근 권호 논문
| | | |

KCI등재

1교차 프로젝트 결함 예측 성능 향상을 위한 효과적인 하모니 검색 기반 비용 민감 부스팅 최적화

저자 : 류덕산 ( Duksan Ryu ) , 백종문 ( Jongmoon Baik )

발행기관 : 한국정보처리학회 간행물 : 정보처리학회논문지. 소프트웨어 및 데이터 공학 7권 3호 발행 연도 : 2018 페이지 : pp. 77-90 (14 pages)

다운로드

(기관인증 필요)

초록보기

소프트웨어 결함 예측(SDP)은 결함이 있는 모듈을 식별하기 위한 연구 분야이다. 충분한 로컬 데이터가 없으면 다른 회사에서 수집한 데이터를 사용하여 분류기를 구축하는 교차 프로젝트 결함 예측(CPDP)을 활용할 수 있다. SDP에 대한 대부분의 기계 학습 알고리즘은 서로 다른 값에 따라 예측 성능에 큰 영향을 미치는 하나 이상의 매개 변수를 사용한다. 본 연구의 목적은 CPDP의 예측 성능 향상을 위해 매개 변수 선택 기법을 제안하는 것이다. Harmony Search 알고리즘을 사용하여, 예측 어려움을 야기하는 클래스 불균형을 해결하는 방법인 비용에 민감한 부스팅의 매개 변수를 조정한다. 분포 특성에 따라 매개 변수 범위와 매개 변수 간의 제한 조건 규칙이 정의되어 하모니 검색 알고리즘에 적용된다. 제안된 접근법은 15개의 대상 프로젝트를 대상으로 3개의 CPDP 모델과 내부프로젝트 결함 예측(WPDP) 모델을 비교한다. 실험 결과는 제안된 방법이 클래스 불균형의 맥락에서 다른 CPDP 방법보다 성능이 우수하다는 것을 보여준다. 이전의 연구에서는 탐지 확률이 낮거나 오보가능성이 높았으나 우리의 기법은 높은 PD와 낮은 PF를 제공하면서 높은 전체 성능을 보였다. 또한 WPDP와 비슷한 성능을 제공하였다.


Software Defect Prediction (SDP) is a field of study that identifies defective modules. With insufficient local data, a company can exploit Cross-Project Defect Prediction (CPDP), a way to build a classifier using dataset collected from other companies. Most machine learning algorithms for SDP have used more than one parameter that significantly affects prediction performance depending on different values. The objective of this study is to propose a parameter selection technique to enhance the performance of CPDP. Using a Harmony Search algorithm (HS), our approach tunes parameters of cost-sensitive boosting, a method to tackle class imbalance causing the difficulty of prediction. According to distributional characteristics, parameter ranges and constraint rules between parameters are defined and applied to HS. The proposed approach is compared with three CPDP methods and a Within-Project Defect Prediction (WPDP) method over fifteen target projects. The experimental results indicate that the proposed model outperforms the other CPDP methods in the context of class imbalance. Unlike the previous researches showing high probability of false alarm or low probability of detection, our approach provides acceptable high PD and low PF while providing high overall performance. It also provides similar performance compared with WPDP.

KCI등재

2질감 분석과 CNN을 이용한 잡음에 강인한 돼지 호흡기 질병 식별

저자 : 최용주 ( Yongju Choi ) , 이종욱 ( Jonguk Lee ) , 박대희 ( Daihee Park ) , 정용화 ( Yongwha C

발행기관 : 한국정보처리학회 간행물 : 정보처리학회논문지. 소프트웨어 및 데이터 공학 7권 3호 발행 연도 : 2018 페이지 : pp. 91-98 (8 pages)

다운로드

(기관인증 필요)

초록보기

집단으로 사육되는 돼지 농장에서 돼지 소모성 질환의 자동 탐지는 매우 중요한 문제이다. 특히, 밀집된 돈사에서 사육되는 돼지들의 호흡기 질환은 축산 농가의 막대한 경제적 손실을 야기하는 대표적 질병들 중 하나이다. 본 논문에서는 소리 신호 해석에 기반하여 돼지의 호흡기 질환을 조기 탐지 및 식별하는 잡음에도 강인한 시스템을 제안한다. 제안하는 시스템은, 먼저 1차원의 소리 신호를 2차원의 회색조 영상으로 변환한 후, DNS기법으로 질감 특징 정보를 갖는 이미지를 생성한다. 마지막으로, 이를 CNN에 입력함으로써 잡음에도 강인한 돼지 호흡기 질병 탐지 및 식별 시스템을 구현하고자 한다. 실제 국내 돈사에서 취득한 돼지의 발성음을 이용하여 제안하는 시스템의 성능을 실험적으로 검증한바, 제안된 시스템은 경제적인 비용(저가의 소리 센서)과 시스템 정확도(96.0% 정확도)로 다양한 잡음 환경에서도 돼지의 호흡기 질병들을 탐지할 수 있음을 실험적으로 확인하였다. 제안된 시스템은 독자적인 혹은 기존 방법들의 보완책으로 사용될 수 있다.


Automatic detection of pig wasting diseases is an important issue in the management of group-housed pigs. In particular, porcine respiratory diseases are one of the main causes of mortality among pigs and loss of productivity in intensive pig farming. In this paper, we propose a noise-robust system for the early detection and recognition of pig wasting diseases using sound data. In this method, first we convert one-dimensional sound signals to two-dimensional gray-level images by normalization, and extract texture images by means of dominant neighborhood structure technique. Lastly, the texture features are then used as inputs of convolutional neural networks as an early anomaly detector and a respiratory disease classifier. Our experimental results show that this new method can be used to detect pig wasting diseases both economically (low-cost sound sensor) and accurately (over 96% accuracy) even under noise-environmental conditions, either as a standalone solution or to complement known methods to obtain a more accurate solution.

KCI등재

3사이버 감시정찰의 정보 분석에 적용되는 점진적 학습 방법과 일괄 학습 방법의 성능 비교

저자 : 신경일 ( Gyeong-il Shin ) , 윤호상 ( Hosang Yooun ) , 신동일 ( Dongil Shin ) , 신동규 ( Dong

발행기관 : 한국정보처리학회 간행물 : 정보처리학회논문지. 소프트웨어 및 데이터 공학 7권 3호 발행 연도 : 2018 페이지 : pp. 99-106 (8 pages)

다운로드

(기관인증 필요)

초록보기

사이버 감시정찰은 공개된 인터넷, 아군 및 적군 네트워크에서 정보를 획득한다. 사이버 ISR에서 에이전트를 활용하여 데이터를 수집하고, 수집한 데이터를 C&C 서버에 전송하여 수집한 데이터를 분석 한 후 해당 분석 결과를 이용하여 의사결정에 도움을 줄 수 있다. 하지만 네트워크 구성에 따라 침투한 컴퓨터에 심어진 에이전트와 외부 네트워크에 존재하는 C&C 서버 간 정기적인 통신이 불가능하게 되는 경우가 존재한다. 이때 에이전트는 C&C 서버와 통신이 재개되는 짧은 순간에 데이터를 C&C 서버에 전달하고, 이를 받은 C&C 서버는 수집한 데이터를 분석한 후 다시 에이전트에게 명령을 내려야한다. 따라서 해당 문제를 해결하기 위해서는 짧은 시간 내에 빠르게 학습이 가능하며, 학습 과정에서 많은 자원을 소모하지 않고도 학습할 수 있어야한다. 본 연구에서는 점진적 학습 방법을 일괄 학습 방법과 비교하는 실험을 통해 우수성을 보여주고 있다. 점진적 학습 방법을 사용한 실험에서는 500M 이하의 메모리 리소스로 제한된 환경에서 학습소요시간을 10배 이상 단축시키는 결과를 보여 주었으나, 잘못 분류된 데이터를 재사용하여 학습 모델을 개선하는 실험에서는 재학습에 소요되는 시간이 200% 이상 증가하는 문제점이 발견되었다.


In the process of acquiring information through the cyber ISR (Intelligence Surveillance Reconnaissance) and research into the agent to help decision-making, periodic communication between the C&C (Command and Control) server and the agent may not be possible. In this case, we have studied how to effectively surveillance and reconnaissance. Due to the network configuration, agents planted on infiltrated computers can not communicate seamlessly with C&C servers. In this case, the agent continues to collect data continuously, and in order to analyze the collected data within a short time in When communication is possible with the C&C server, it can utilize limited resources and time to continue its mission without being discovered. This research shows the superiority of incremental learning method over batch method through experiments. At an experiment with the restricted memory of 500 mega bytes, incremental learning method shows 10 times decrease in learning time. But at an experiment with the reuse of incorrectly classified data, the required time for relearn takes twice more.

KCI등재

4드론과 지상로봇 간의 협업을 위한 광학흐름 기반 마커 추적방법

저자 : 백종환 ( Jong-hwan Beck ) , 김상훈 ( Sang-hoon Kim )

발행기관 : 한국정보처리학회 간행물 : 정보처리학회논문지. 소프트웨어 및 데이터 공학 7권 3호 발행 연도 : 2018 페이지 : pp. 107-112 (6 pages)

다운로드

(기관인증 필요)

초록보기

본 논문에서는 드론과 지상 로봇 간 효과적인 협업을 위하여 광학 흐름 기술 기반의 특징점 추적 알고리즘을 제안하였다. 드론의 비행 중 빠른 움직임에 의하여 많은 문제점이 발생하여 지상물체를 성공적으로 인식하기 위해 직관적이면서도 식별자를 가지고 있는 마커를 사용했다. 특징점 추출이 우수한 FAST알고리즘과 움직임 감지가 우수한 루카스-카나데 광학흐름 알고리즘의 장점들을 혼합하여 기존 특징점-특징량 기반 객체 추적 방법보다 개선된 속도의 실험결과를 보여준다. 또한 제안한 마커의 검출방법에 적절한 이진화 방법을 제안하여 주어진 마커에서의 검출 정확도를 개선하였으며, 추적속도는 유사한 환경의 기존연구보다 40% 이상 개선됨을 확인하였다. 또한 비행드론의 경량화와 속도개선에 문제가 없도록 최소형 고성능의 임베디드 환경을 선택하였으며, 제한된 개발환경에서도 물체검출과 추적 등 복잡한 연산이 가능하도록 동작환경에 대하여 연구하였다. 향후에는 다른 환경에서 빠르게 움직이는 두 로봇 간의 협업의 정확도를 향상시키기 위해 지능적 비전기능에 대해 추가할 예정이다.


In this paper, optical flow based keypoint detection and tracking technique is proposed for the collaboration between flying drone with vision system and ground robots. There are many challenging problems in target detection research using moving vision system, so we combined the improved FAST algorithm and Lucas-Kanade method for adopting the better techniques in each feature detection and optical flow motion tracking, which results in 40% higher in processing speed than previous works. Also, proposed image binarization method which is appropriate for the given marker helped to improve the marker detection accuracy. We also studied how to optimize the embedded system which is operating complex computations for intelligent functions in a very limited resources while maintaining the drone's present weight and moving speed. In a future works, we are aiming to develop collaborating smarter robots by using the techniques of learning and recognizing targets even in a complex background.

KCI등재

5전문 설비의 이상신호 처리를 위한 저비용 관제 시스템 구축

저자 : 채유나 ( Yuna Chae ) , 김창규 ( Changi Kim ) , 고하람 ( Haram Ko ) , 김웅섭 ( Woongsup Kim )

발행기관 : 한국정보처리학회 간행물 : 정보처리학회논문지. 소프트웨어 및 데이터 공학 7권 3호 발행 연도 : 2018 페이지 : pp. 113-120 (8 pages)

다운로드

(기관인증 필요)

초록보기

본 연구에서는 공장 내부의 설비의 동작의 이상 유무를 저가의 센서를 사용하여 모니터링하고 이를 확인할 수 있도록 하는 시스템을 구현하였다. 저가의 센서들은 저렴한 비용으로 넓은 장소에 다량의 기기들에 설치할 수 있다는 장점을 가지지만 센서의 오작동 및 센서의 정확성문제로 정확한 감시와 확인이 어려워진다는 단점을 가진다. 따라서 저가의 센서를 사용하게 되면 생산설비에서 발생하는 데이터로부터 이상 값을 구분하여 이상상황에 대한 센서의 오작동인지 또는 설비의 고장인지 여부를 판단하고 이를 알람을 통해 확인할 수 있는 모니터링 시스템이 필수로 구축되어야 한다. 본 연구에서 우리는 저가의 센서들에서 감지된 정상 범위를 벗어나는 데이터 값에서 센서의 오작동과 설비의 고장여부를 구분할 수 있는 시스템을 구현하였으며 이를 위해 우리는 가중이동 평균법과 푸리에 변환 기반 신호 검증 시스템을 혼합한 시스템을 설계 구현하였다. 이를 통해 설비에서 정상범위를 벗어나는 값들이 감지되는 경우 이들을 기기의 이상과 센서의 이상 상황으로 구분할 수 있도록 하였으며 실험결과 전체 이상 신호 값 중에 1/3에 해당하는 부분을 센서의 이상 상황으로 분류 정상처리하고 있음을 확인할 수 있었다. 또한 우리는 모니터링 시스템의 구축 비용 절감을 위해 정보를 무선통신으로 전송하도록 하였으며 작동 센싱 정보들을 비정형 데이터로 구현 처리하도록 하여 다수의 센서에서 수집된 대규모의 정보들을 효율적으로 처리할 수 있도록 하였다.


In this study, we proposed a monitoring system for identifying and handling faulty sensing stream data on manufacturing equipments where low-cost sensors can be safely used. Low cost sensors will lessen the cost of implementing distributed monitoring system, but suffer from sensor noises and inaccurate sensed data. Therefore, a distributed monitoring system with low cost sensors should identify faulty signal data as either of sensor fault or machine fault, and filter out faulty signals from sensing fault. To this end, we adopted a fourier transform based diagnostic approach mixed with a weighed moving averaging method, in order to identify faulty signals. We measured how effective our approach is and found out our approach can filter out one-third faulty signals from our experimental environment. In addition, we attached wireless communication modules to reduce sensor and network installation cost. To handle massive sensor data efficiently, we employed unstructured data format with NoSQL based database.

1
권호별 보기
가장 많이 인용된 논문

(자료제공: 네이버학술정보)

가장 많이 인용된 논문
| | | |
1연안해역에서 석유오염물질의 세균학적 분해에 관한 연구

(2006)홍길동 외 1명심리학41회 피인용

다운로드

2미국의 비트코인 규제

(2006)홍길동심리학41회 피인용

다운로드

가장 많이 참고한 논문

(자료제공: 네이버학술정보)

가장 많이 참고한 논문

다운로드

2미국의 비트코인 규제

(2006)홍길동41회 피인용

다운로드

해당 간행물 관심 구독기관

순천대학교 성균관대학교 한국방송통신대학교 연세대학교 서울대학교
 32
 18
 18
 18
 17
  • 1 순천대학교 (32건)
  • 2 성균관대학교 (18건)
  • 3 한국방송통신대학교 (18건)
  • 4 연세대학교 (18건)
  • 5 서울대학교 (17건)
  • 6 강원대학교 (16건)
  • 7 충남대학교 (15건)
  • 8 서울과학기술대학교(구 서울산업대학교) (14건)
  • 9 홍익대학교 (13건)
  • 10 경희대학교 (12건)

내가 찾은 최근 검색어

최근 열람 자료

맞춤 논문

보관함

내 보관함
공유한 보관함

1:1문의

닫기