간행물

한국통계학회> 응용통계연구

응용통계연구 update

The Korean Journal of Applied Statistics

  • : 한국통계학회
  • : 자연과학분야  >  통계학
  • : KCI등재
  • :
  • : 연속간행물
  • : 격월
  • : 1225-066x
  • : 2383-5818
  • :

수록정보
수록범위 : 1권1호(1987)~31권6호(2018) |수록논문 수 : 1,793
응용통계연구
31권6호(2018년) 수록논문
최근 권호 논문
| | | |

KCI등재

1모수, 비모수, 베이지안 출산율 모형을 활용한 합계출산율 예측과 비교

저자 : 오진호 ( Jinho Oh )

발행기관 : 한국통계학회 간행물 : 응용통계연구 31권 6호 발행 연도 : 2018 페이지 : pp. 377-392 (16 pages)

다운로드

(기관인증 필요)

초록보기

최근 2017년 우리나라 합계출산율은 1.05명로 2005년 1.08명 수준으로 회귀하는 현상을 보이고 있다. 1.05명은 인구대체선(2.1명), 안전선(1.5명)과도 거리가 먼 초저출산 수준이고 마치 초저출산 덫에 빠질 우려가 있다. 이에 합계출산율의 합리적인 예측과 이를 통한 출산정책에 유용한 자료를 제공하는 것은 그 어느 때 보다도 중요하다. 그 동안 다양한 통계적 방법으로 합계출산율 추이를 예측하였는데, 데이터 완비성이 높고 품질이 좋은 경우 모형 접근인 모수적 방법, 데이터 추이가 단절되거나 변동이 심한 경우 평활과 가중치를 적용한 비모수적 방법, 데이터 부족과 품질 등으로 선진국의 출산율 3단계 전이현상을 참고하여 이들의 사전분포를 활용하는 베이지안 방법 등이 적용되어 왔다. 본 연구는 최근 변동이 심한 우리나라 출산율에 모수, 비모수, 그리고 베이지안 방법을 적용하여 추정과 예측을 실시하고 도출된 결과 비교를 통해 적합성과 타당성 측면에서 어떤 방법이 합리적인지 모색하고자 한다. 분석 결과 합계출산율 예측값 순위는 통계청 합계출산율이 가장 높고, 베이지안, 모수, 비모수 순으로 나타났다. 2017년 TFR 1.05명 수준을 감안할 때 모수, 비모수모형으로 도출된 합계출산율 예측값이 합리적이다. 또한 출산율 자료 완비성이 높고 품질이 우수할 경우 계산 효율성과 적합도 관점에서 모수적 추정과 예측 접근 방법이 타 방법보다 우수한 것으로 도출되었다.


The total fertility rate of Korea was 1.05 in 2017, showing a return to the 1.08 level in the year 2005. 1.05 is a very low fertility level that is far from replacement level fertility or safety zone 1.5. The number may indicate a low fertility trap. It is therefore important to predict fertility than at any other time. In the meantime, we have predicted the age-specific fertility rate and total fertility rate by various statistical methods. When the data trend is disconnected or fluctuating, it applied a nonparametric method applying the smoothness and weight. In addition, the Bayesian method of using the pre-distribution of fertility rates in advanced countries with reference to the three-stage transition phenomenon have been applied. This paper examines which method is reasonable in terms of precision and feasibility by applying estimation, forecasting, and comparing the results of the recent variability of the Korean fertility rate with parametric, non-parametric and Bayesian methods. The results of the analysis showed that the total fertility rate was in the order of KOSTAT's total fertility rate, Bayesian, parametric and non-parametric method outcomes. Given the level of TFR 1.05 in 2017, the predicted total fertility rate derived from the parametric and nonparametric models is most reasonable. In addition, if a fertility rate data is highly complete and a quality is good, the parametric model approach is superior to other methods in terms of parameter estimation, calculation efficiency and goodness-of-fit.

KCI등재

2의사결정나무기법을 활용한 장기요양 복지용구 권고모형 개발

저자 : 한은정 ( Eun-jeong Han ) , 박상희 ( Sanghee Park ) , 이정석 ( Jungsuk Lee ) , 김동건 ( Dong-geon Kim )

발행기관 : 한국통계학회 간행물 : 응용통계연구 31권 6호 발행 연도 : 2018 페이지 : pp. 693-706 (14 pages)

다운로드

(기관인증 필요)

초록보기

노인의 신체기능에 부합하는 복지용구를 제공하는 것은 노인이 가능한 한 오랫동안 자신의 집과 지역사회에서 자립하여 생활할 수 있도록 돕기 위해 매우 중요하다. 본 연구는 수급자의 신체 및 인지 기능 상태를 고려하여 개개인에게 적합한 복지용구 품목을 권고할 수 있는 과학적인 복지용구 표준급여모형 알고리즘을 개발하고자 수행되었다. 모형개발에는 데이터마이닝기법인 의사결정나무를 활용하였다. 수급자 8,084명의 장기요양인정조사자료와 파워어세서가 작성한 표준급여계획, 수급자 특성 자료를 이용하여 데이터를 구축하였고, 15개 복지용구 품목별로 표준급여모형을 개발하였다. 본 연구는 노인장기요양보험의 복지용구 급여계획의 객관성 및 과학성을 확보하고 수급자의 자립 생활과 안전을 향상시키는 데에 기여할 것으로 기대된다.


It is very important to support the elderly with disability ageing in place. Assisting devices can help them to live independently in their community; however, they have to be used appropriately to meet care needs. This study develops an assisting device recommendation system for the beneficiaries of long-term care insurance that include algorithms to decide the most appropriate type of assisting device for beneficiaries. We used long-term care (LTC) insurance data for grade assessment including 8,084 beneficiaries from July 2015 to June 2016. In addition, we collected standard care plans for assisting devices, that power-assessors made, considering their performance and ability that could subsequently be matched with grade assessment data. We used a decision-tree model in data-mining to develop the model. Finally, we developed 15 algorithms for recommending assisting devices. The findings might be useful in evidence-based care planning for assisting devices and can contribute to enhancing independence and safety in LTC.

KCI등재

3불균형 Haar 웨이블릿 변환을 이용한 군집화를 위한 시계열 표현

저자 : 이세훈 ( Sehun Lee ) , 백창룡 ( Changryong Baek )

발행기관 : 한국통계학회 간행물 : 응용통계연구 31권 6호 발행 연도 : 2018 페이지 : pp. 707-719 (13 pages)

다운로드

(기관인증 필요)

초록보기

시계열 데이터의 분류와 군집화를 효율적으로 수행하기 위해 다양한 시계열 표현 방법들이 제안되었다. 본 연구는 Lin 등 (2007)이 제안한 국소 평균 근사를 이용하여 시계열의 차원을 축소한 후 심볼릭 자료로 이산화하는 symbolic aggregate approximation (SAX) 방법의 개선에 대해서 연구하였다. SAX는 국소 평균 근사를 할 때 등간격으로 임의의 개수의 세그먼트로 나누어 평균을 계산하여 세그먼트의 개수에 그 성능이 크게 좌우된다. 따라서 본 논문은 불균형 Haar 웨이블릿 변환을 통해 국소 평균 수준을 등간격이 아니라 자료의 특성을 반영하여 자료 의존적으로 선택하게 함으로써 시계열의 차원을 효과적으로 축소함과 동시에 정보의 손실을 줄이는 방법에 대해서 제안한다. 제안한 방법은 실증 자료 분석을 통해 SAX 방법을 개선시킴을 확인하였다.


Various time series representation methods have been proposed for efficient time series clustering and classification. Lin et al. (DMKD, 15, 107-144, 2007) proposed a symbolic aggregate approximation (SAX) method based on symbolic representations after approximating the original time series using piecewise local mean. The performance of SAX therefore depends heavily on how well the piecewise local averages approximate original time series features. SAX equally divides the entire series into an arbitrary number of segments; however, it is not sufficient to capture key features from complex, large-scale time series data. Therefore, this paper considers data-adaptive local constant approximation of the time series using the unbalanced Haar wavelet transformation. The proposed method is shown to outperforms SAX in many real-world data applications.

KCI등재

4잠재변수 모형에서의 군집효율을 이용한 변수선택

저자 : 김성경 ( Seongkyung Kim ) , 서병태 ( Byungtae Seo )

발행기관 : 한국통계학회 간행물 : 응용통계연구 31권 6호 발행 연도 : 2018 페이지 : pp. 721-732 (12 pages)

다운로드

(기관인증 필요)

초록보기

잠재집단 모형은 다변량 범주형 자료 안에 숨겨진 집단을 찾는 매우 중요한 도구종의 하나이다. 하지만 실제 자료 분석에서 너무 많은 관찰변수들을 포함시킨 모형은 모형을 복잡하게 만들고 또한 모수추정의 정확도에 영향을 주기 때문에 정보가 손실되지 않는 내에서 유용한 변수를 찾는 것은 중요한 문제이다. Dean과 Raftery (2010)은 잠재집단 모형에서의 변수선택을 위해 BIC를 이용한 Headlong search 알고리즘을 제시하였는데 본 논문에서는 이 방법을 대체할 수 있는 방법으로 적합한 모형으로부터 계산된 잠재집단에 속할 사후확률을 이용하여 변수 선택을 하는 방법을 제안하고자 한다. 이를 위하여 잠재집단 모형의 적합성을 측정할 수 있는 새로운 통계량과 이를 이용한 변수선택 알고리즘을 제시할 것이다. 또한 제안된 방법의 효율성을 모의실험과 실증자료 분석을 통해 살펴보고자 한다.


Latent class analysis (LCA) is an important tool to explore unseen latent groups in multivariate categorical data. In practice, it is important to select a suitable set of variables because the inclusion of too many variables in the model makes the model complicated and reduces the accuracy of the parameter estimates. Dean and Raftery (Annals of the Institute of Statistical Mathematics, 62, 11-35, 2010) proposed a headlong search algorithm based on Bayesian information criteria values to choose meaningful variables for LCA. In this paper, we propose a new variable selection procedure for LCA by utilizing posterior probabilities obtained from each fitted model. We propose a new statistic to measure the adequacy of LCA and develop a variable selection procedure. The effectiveness of the proposed method is also presented through some numerical studies.

KCI등재

5과대산포 가산자료의 새로운 표본선택모형

저자 : 조성은 ( Sung Eun Jo ) , 조준 ( Jun Zhao ) , 김형문 ( Hyoung-moon Kim )

발행기관 : 한국통계학회 간행물 : 응용통계연구 31권 6호 발행 연도 : 2018 페이지 : pp. 733-749 (17 pages)

다운로드

(기관인증 필요)

초록보기

어떠한 연구에서 관심의 대상이 되는 관찰치가 부분적으로 관측 가능할 때 표본선택의 문제가 일어난다. 이러한 자료를 분석하기 위해 헤크만은 표본선택 모형을 개발하였고 이변량 정규분표의 가정 하에 최대우도방법을 사용하여 모수를 추정하였다. 최근 이항자료와 포아송 자료에 대한 표본선택모형이 제안되었다. 이를 분포조정에 기초하여 과대산포 자료에 대한 모형으로 확장하고자 한다. 표본선택이 없는 과대산포 자료는 흔히 음이항 분포로 분석되어진다. 따라서 음이항 분포를 이용하고 분포조정을 도입한 과대산포 자료에 대한 새로운 모형을 제시하고자 한다. 실제 자료를 이용하여 분석을 하였다. 모의실험 결과 프로파일 우도함수를 이용하여 모수에 대해 추정한 결과는 안정적이다.


Sample selection arises as a result of the partial observability of the outcome of interest in a study. Heckman introduced a sample selection model to analyze such data and proposed a full maximum likelihood estimation method under the assumption of normality. Recently sample selection models for binomial and Poisson response variables have been proposed. Based on the theory of symmetry-modulated distribution, we extend these to a model for overdispersed count data. This type of data with no sample selection is often modeled using negative binomial distribution. Hence we propose a sample selection model for overdispersed count data using the negative binomial distribution. A real data application is employed. Simulation studies reveal that our estimation method based on profile log-likelihood is stable.

KCI등재

6연속적으로 투자가 이루어지는 보험상품 리스크 모형의 추가 연구

저자 : 최승경 ( Seung Kyoung Choi ) , 이의용 ( Eui Yong Lee )

발행기관 : 한국통계학회 간행물 : 응용통계연구 31권 6호 발행 연도 : 2018 페이지 : pp. 751-759 (9 pages)

다운로드

(기관인증 필요)

초록보기

Cho 등 (Communications for Statistical Applications and Methods, 23, 423-432, 2016)은 잉여금이 적정수준에 이르면 연속적으로 투자가 이루어지는 보험상품 리스크 모형을 소개하고, 잉여금 과정의 정상분포함수를 연구하였다. 본 논문에서는 잉여금이 적정수준을 넘어 또 다른 충분한 수준에 이르게 되면 추가로 즉시 투자가 이루어진다고 가정하고 기존의 연구를 확장한다. 잉여금 과정의 정상분포함수를 명확히 구하고, 보험청구액의 분포가 지수분포인 경우를 예제로 다룬다.


Cho et al. (Communications for Statistical Applications and Methods, 23, 423-432, 2016) introduced a risk model with a continuous type investment and studied the stationary distribution of the surplus process. In this paper, we extend the earlier analysis by assuming that additional instant investment is made when the surplus process reaches a certain sufficient level. We obtain the explicit form of the stationary distribution of the surplus process. The case is shown as an example, when the amount of claim is exponentially distributed.

KCI등재

7Cox 비례위험모형을 따르는 중도절단자료 생성

저자 : 김지현 ( Ji-hyun Kim ) , 김봉성 ( Bongseong Kim )

발행기관 : 한국통계학회 간행물 : 응용통계연구 31권 6호 발행 연도 : 2018 페이지 : pp. 761-769 (9 pages)

다운로드

(기관인증 필요)

초록보기

통계학 연구에 모의실험이 중요하게 쓰이며 중도절단자료를 다루는 생존분석에서도 마찬가지다. 생존분석에서 Cox모형이 널리 쓰이는데, Cox 모형을 따르는 중도절단자료를 생성하는 방법에 대해 살펴보았다. Bender 등 (Statis-tics in Medicine, 24, 1713{1723, 2005)은 생존시간을 생성하는 모수적 방법을 제시하였으나 생존시간뿐만 아니라 중도절단시간도 생성해야 중도절단자료를 얻게 된다. 중도절단자료를 생성하기 위한 모수적 방법과 함께 비모수적 방법도 제시하였으며 실제 자료에도 적용해 보았다.


Simulations are important for survival analyses that deal with censored data. Cox models are widely used in survival analyses, therefore, we investigate how to generate censored data that can simulate the Cox model. Bender et al. (Statistics in Medicine, 24, 1713{1723, 2005) provided a parametric method for generating survival times, but we need to generate censoring times as well as survival times to simulate the censored data. In addition to the parametric method for generating censored data, a nonparametric method is also proposed and applied to a real data set.

KCI등재

8생명보험자료를 이용한 계약유지기간에 대한 생존분석

저자 : 양대건 ( Dae Geon Yang ) , 하일도 ( Il Do Ha ) , 조건호 ( Geon Ho Cho )

발행기관 : 한국통계학회 간행물 : 응용통계연구 31권 6호 발행 연도 : 2018 페이지 : pp. 771-783 (13 pages)

다운로드

(기관인증 필요)

초록보기

최근에 생명보험 산업은 보험계약의 장기 연장에 영향을 미치는 다양한 요인들에 관심을 두고 있다. 예를 들어 모집 설계사의 장기간 고객관리의 필요성, 상품상담, 투자측면의 개선 등이다. 따라서 본 연구에서는 우리나라 생명보험사의 장기계약을 유지하는 중요한 요인들을 조사하고자 한다. 이를 위해 우리나라의 모 생명보험사의 2011년 1월 1일부터 2016년 12월 31일까지의 계약건의 내용에 대한 데이터를 사용하였다. 본 논문에서는 이러한 데이터를 사용하여 벌점화 콕스 비례위험모형 접근법을 통해 계약유지기간에 중요한 영향을 미치는 변수를 선택하는 방법을 제시한다. 분석결과 설계사의 변경 유무, 연금 상품군, 그리고 안정적 투자성향과 같은 세 가지 변수가 계약건 유지에 주요한 요인으로 선택되었다.


The life insurance industry is interested in various factors that influence the long-term extensions of insurance contracts such as the necessity for the advisors' long-term management of consumers, product consulting, and improvement of the investment aspects. This paper investigates important factors leading to a longterm contract that forms an important part of the life insurance industry in Korea. For this purpose we used the data of contents (i.e., data from Jan 1, 2011 to Dec 31, 2016) of the contracts of xxx insurance company. In this paper, we present how to select important variables to influence the duration of the contract maintenance via a penalized Cox's proportional hazards (PH) modelling approach using insurance life data. As the result of analysis, we found that the selected important factors were the advisor's status, the reward type 2 (annuity insurance) and tendency 4 (safety-pursuing type).

KCI등재

9시계열 모형을 활용한 일사량 예측 연구

저자 : 서유민 ( Yu Min Suh ) , 손흥구 ( Heung-goo Son ) , 김삼용 ( Sahm Kim )

발행기관 : 한국통계학회 간행물 : 응용통계연구 31권 6호 발행 연도 : 2018 페이지 : pp. 785-799 (15 pages)

다운로드

(기관인증 필요)

초록보기

신재생에너지 산업이 발전함에 따라 태양광 발전에 대한 중요성이 확대되고 있다. 태양광 발전량을 정확히 예측하기 위해서는 일사량 예측이 필수적이다. 본 논문에서는 태양광 패널이 존재하는 청주와 광주 지역을 선정하여 기상포털에서 제공하는 시간별 기상 데이터를 수집하여 연구하였다. 일사량 예측을 위하여 시계열 모형인 ARIMA, ARIMAX, seasonal ARIMA, seasonal ARIMAX, ARIMA-GARCH, ARIMAX-GARCH, seasonal ARIMA-GARCH, seasonal ARIMAX-GARCH 모형을 비교하였다. 본 연구에서는 모형의 예측 성능을 비교하고자 mean absolute error와 root mean square error를 사용하였다. 모형들의 예측 성능 비교 결과 일사량만 고려하였을 때는 이분산 문제를 고려한 seasonal ARIMA-GARCH 모형이 우수한 성능을 나타냈고, 외생변수를 활용한 ARIMAX 모형으로 일사량 예측을 한 경우가 가장 좋은 예측력을 나타냈다.


With the development of renewable energy sector, the importance of solar energy is continuously increas- ing. Solar radiation forecasting is essential to accurately solar power generation forecasting. In this paper, we used time series models (ARIMA, ARIMAX, seasonal ARIMA, seasonal ARIMAX, ARIMA GARCH, ARIMAX-GARCH, seasonal ARIMA-GARCH, seasonal ARIMAX-GARCH).We compared the performance of the models using mean absolute error and root mean square error. According to the performance of the models without exogenous variables, the Seasonal ARIMA-GARCH model showed better performance model considering the problem of heteroscedasticity. However, when the exogenous variables were considered, the ARIMAX model showed the best forecasting accuracy.

KCI등재

10단순 확산과정들에 대한 확률효과 모형

저자 : 이은경 ( Eun-kyung Lee ) , 이인석 ( In Suk Lee ) , 이윤동 ( Yoon Dong Lee )

발행기관 : 한국통계학회 간행물 : 응용통계연구 31권 6호 발행 연도 : 2018 페이지 : pp. 801-810 (10 pages)

다운로드

(기관인증 필요)

초록보기

확산은 금융이나 물리적 현상의 모형화에 이용되는 확률과정이다. 반복적으로 관측된 확산과정에 대하여 통계적인 모형을 구축할 때, 확률효과를 고려할 필요가 있다. 이 연구에서는 Ornstein-Uhlenbeck 확산모형과 geometric Brownian motion 확산모형에 대하여 확률효과를 도입한다. 모형모수에 대한 최도우도추정법을 적용하기 위하여, 확률효과에 대한 적절한 분포를 가정하여 닫힌 형태로 우도함수를 얻는 방법을 탐색하였다. 1991년부터 2017년까지 27년간 일일 단위로 기록된 다우존스 산업지수에 대하여 확률효과 모형을 적용하였다.


Diffusion is a random process used to model financial and physical phenomena. When we construct statistical models for repeatedly observed diffusion processes, the idea of random effects needs to be considered. In this research, we introduce random parameters for an Ornstein-Uhlenbeck diffusion model and geometric Brownian motion diffusion model. In order to apply the maximum likelihood estimation method, we tried to build likelihoods in closed-forms, by assuming appropriate distributions for random effects. We applied the random effect models to data consisting of Dow Jones Industrial Average indices recorded daily over 27 years from 1991 to 2017.

12
권호별 보기
가장 많이 인용된 논문

(자료제공: 네이버학술정보)

가장 많이 인용된 논문
| | | |
1연안해역에서 석유오염물질의 세균학적 분해에 관한 연구

(2006)홍길동 외 1명심리학41회 피인용

다운로드

2미국의 비트코인 규제

(2006)홍길동심리학41회 피인용

다운로드

가장 많이 참고한 논문

(자료제공: 네이버학술정보)

가장 많이 참고한 논문

다운로드

2미국의 비트코인 규제

(2006)홍길동41회 피인용

다운로드

해당 간행물 관심 구독기관

서울대학교 연세대학교 고려대학교 중앙대학교(서울) 부경대학교
 109
 105
 79
 51
 41
  • 1 서울대학교 (109건)
  • 2 연세대학교 (105건)
  • 3 고려대학교 (79건)
  • 4 중앙대학교(서울) (51건)
  • 5 부경대학교 (41건)
  • 6 성균관대학교 (35건)
  • 7 계명대학교 (33건)
  • 8 이화여자대학교 (32건)
  • 9 한양대학교 (29건)
  • 10 경희대학교 (28건)

내가 찾은 최근 검색어

최근 열람 자료

맞춤 논문

보관함

내 보관함
공유한 보관함

1:1문의

닫기