간행물

한국통계학회> 응용통계연구

응용통계연구 update

The Korean Journal of Applied Statistics

  • : 한국통계학회
  • : 자연과학분야  >  통계학
  • : KCI등재
  • :
  • : 연속간행물
  • : 격월
  • : 1225-066x
  • : 2383-5818
  • :

수록정보
수록범위 : 1권1호(1987)~31권1호(2018) |수록논문 수 : 1,742
응용통계연구
31권1호(2018년 02월) 수록논문
최근 권호 논문
| | | |

KCI등재

1다변량 공정 모니터링에서 이상신호 발생시 원인식별에 관한 연구

저자 : 이성임 ( Sungim Lee )

발행기관 : 한국통계학회 간행물 : 응용통계연구 31권 1호 발행 연도 : 2018 페이지 : pp. 1-11 (11 pages)

다운로드

(기관인증 필요)

초록보기

최근 다변량 공정관리는 다양한 응용 분야에서 중요해지고 있는 추세이다. 예를 들어, 제조 산업 분야에서는 다변량 품질특성치를 동시에 모니터링할 필요가 있다. 그러나, 다변량 관리도는 이상신호가 발생한 경우 그 원인이 되는 개별적인 변수를 식별하기가 어렵기 때문에, 실제로는 기대만큼 유용하게 쓰이고 있지 않은 형편이다. 이에 본 논문에서는 새로운 관측치에 대한 개별적인 신뢰구간을 사용하여 이상신호의 원인을 탐지하는 세 가지 방법을 소개하고, 시뮬레이션 연구를 통해 이상신호의 원인이 되는 개별적인 변수를 식별하고 해석하는 데 있어 주의할 점이 무엇인지 살펴보기로 한다.


Multivariate process control has become important in various applied fields. For instance, there are many situations in which the simultaneous monitoring of multivariate quality characteristics is necessary for the manufacturing industry. Despite its importance, its practical usage is not as convenient because it is difficult to identify the source of the out-of-control signal in a multivariate control chart. In this paper, we will introduce how to detect the source of the out-of-control by using confidence intervals for new observations, and will discuss the identification and interpretation of the out-of-control variable through simulation studies.

KCI등재

2주의력 결핍 과잉 행동장애를 종점으로 하는 혈중 납의 벤치마크 용량 하한 도출: 두 동집단 자료의 병합

저자 : 김시연 ( Si Yeon Kim ) , 하미나 ( Mina Ha ) , 권호장 ( Hojang Kwon ) , 김병수 ( Byung Soo Ki

발행기관 : 한국통계학회 간행물 : 응용통계연구 31권 1호 발행 연도 : 2018 페이지 : pp. 13-28 (16 pages)

다운로드

(기관인증 필요)

초록보기

우리나라 환경부에서는 지난 2005년과 2006년, 매 2년마다 세 번에 걸친 추적 조사를 하여 두 개의 독립적인 자료를 구축하였고, 2010년에 두 자료를 병합하여 Children's Health and Environmental Research (CHEER) 자료라 명명하였다. 본 연구는 CHEER 자료를 이용한 Kim 등 (Journal of the Korean Data and Information Science Society, 25, 987-998, 2014)과 Lee 등 (The Korean Journal of Applied Statistics, 29, 1295-1310, 2016)의 후속 연구로서, 두 동집단을 병합한 자료에서도 기존 연구에서 보고되었던 결과가 재현되는지 확인하고 ADHD를 종점으로 한 혈중 납 농도의 95% 신뢰 하한 (BMDL) 도출하였다. Lee 등 (2016)에서 제시한 벌점화 스플라인 모형을 이용하여 모든 년도의 ADHD 척도를 통일하였고, 경시적 자료의 특성과 아동의 나이에 대한 평균으로의 회귀 현상을 반영하여 임의 기울기 모형과 AR(1) 모형을 구축하였다. 두 모형을 바탕으로 혈중 납 농도의 벤치마크 용량하한을 공식과 모의실험을 이용하여 도출한 결과, 종전의 연구보다 작은 벤치마크 용량의 분산 값으로 인하여 벤치마크 용량 하한 값이 증가한다는 사실을 확인할 수 있었다.


The ministry of Environment of Korea initiated two follow-up surveys in 2005 and 2006 to investigate environmental effect on children's health. These two cohorts, referred to as the 2005 Cohort and 2006 Cohort, were followed up three times every two years. This data set was referred to as the Children's Health and Environmental Research (CHEER) data set. This paper reproduces the existing research results of Kim et al. (Journal of the Korean Data and Information Science Society, 25, 987-998, 2014) and Lee et al. (The Korean Journal of Applied Statistics, 29, 1295-1310, 2016) and derive a benchmark dose lower limit (BMDL) for blood lead level for attention deficit hyperactivity disorder (ADHD) after pooling two cohort data sets. The different ADHD rating scales were unified by applying the conversion formula proposed by Lee et al. (2016). The random effect model and AR(1) model were built to reflect the longitudinal characteristics and regression to the mean phenomenon. Based on these models the BMDLs for blood lead levels were derived using the BMDL formula and the simulation. We obtained a hight level of BMDLs when we pooled two independent cohort data sets.

KCI등재

3군집화 및 특성도를 이용한 결측치 대체 방법

저자 : 김성현 ( Sunghyun Kim ) , 김동재 ( Dongjae Kim )

발행기관 : 한국통계학회 간행물 : 응용통계연구 31권 1호 발행 연도 : 2018 페이지 : pp. 29-40 (12 pages)

다운로드

(기관인증 필요)

초록보기

데이터를 수집함에 있어 여러 가지 이유로 결측이 발생하게 된다. 결측치는 분석 및 결과에 적지 않은 영향을 미치므로, 이를 해결하기 위해 결측치를 처리하는 다양한 방법들이 연구되었다. 반복 측정 자료에서 초기 시점의 측정값이 어떠한지에 따라서 뒤의 시점 측정값이 어느 정도 영향을 받을 수도 있을 것으로 생각된다. 하지만 기존 방법에서는 이러한 개념을 이용한 결측치 대체가 없었으므로 본 연구에서는 반복 측정 자료에서 초기 시점을 이용한 군집화 및 Kim과 Kim (2017)이 제안한 특성도를 이용하여 새로운 결측치 대체 방법을 제안하였다. 또한 여러 반복 측정자료를 이용하여 Monte Carlo 모의실험을 통하여 기존 결측 대체 방법과 제안 방법의 여러 대체 성능을 비교해 보았다.


There are various reasons for missing values when collecting data. Missing values have some influence on the analysis and results; consequently, various methods of processing missing values have been studied to solve the problem. It is thought that the later point of view may be affected by the initial time point value in the repeated measurement data. However, in the existing method, there was no method for the imputation of missing values using this concept. Therefore, we proposed a new missing value imputation method in this study using clustering in initial time point of the repeated measurement data and the measure of property proposed by Kim and Kim (The Korean Communications in Statistics, 30, 463-473, 2017). We also applied the Monte Carlo simulations to compare the performance of the established method and suggested methods in repeated measurement data.

KCI등재

4시계열 이용기간에 따른 사망률 예측 비교

저자 : 김순영 ( Soon-young Kim ) , 오진호 ( Jinho Oh ) , 김기환 ( Kee-whan Kim )

발행기관 : 한국통계학회 간행물 : 응용통계연구 31권 1호 발행 연도 : 2018 페이지 : pp. 41-65 (25 pages)

다운로드

(기관인증 필요)

초록보기

우리나라의 경우 선진국에 비해 짧은 기간 동안 사망률 개선이 급속히 이루어짐에 따라 사망률 예측에 있어 모형의 선택뿐만 아니라 시계열 이용기간의 선정 또한 중요한 고려사항이 될 수 있다. 따라서 본 연구에서는 시계열 이용기간의 선택 관점에서 회귀모형을 이용하는 방법을 제안하였다. 또한 Lee-Carter (LC) 모형, LC류 (Lee-Miller (LM), Booth-Maindonald-Smith (BMS)) 그리고 비모수 모형(functional data model (FDM), Coherent FDM)을 토대로 시계열 이용기간을 다르게 적용할 경우 어떠한 문제가 발생되며, 연령별 사망률과 기대수명 예측력에 어떠한 차이를 보이는지 살펴보았다. 분석결과를 바탕으로 5개의 모형별 2030년까지 남녀의 연령별 사망률과 예측기대수명을 작성하고 통계청(Korean Statistical Information Service; KOSIS)에서 제공하는 장래 연령별 사망률과 기대수명과 비교하였다.


In Korea, as the mortality rate improves in a shorter period of time than in developed countries, it is important to consider the selection of the time series as well as the model selection in the mortality projection. Therefore, this study proposed a method using the multiple regression model in respect to the selection of the time series period. In addition, we investigate the problems that arise when various time series are used based on the Lee-Carter (LC) model, the kinds of LC model along with Lee-Miller (LM) and Booth-Maindonald- Smith (BMS), and the non-parametric model such as functional data model (FDM) and Coherent FDM, and examine differences in the age-specific mortality rate and life expectancy projection. Based on the analysis results, the age-specific mortality rate and predicted life expectancy of men and women are calculated for the year 2030 for each model. We also compare the mortality rate and life expectancy of the next generation provided by Korean Statistical Information Service (KOSIS).

KCI등재

5분할법을 활용한 범주형자료의 다차원척도법

저자 : 신상민 ( Sang Min Shin ) , 천선경 ( Sun-kyung Chun ) , 최용석 ( Yong-seok Choi )

발행기관 : 한국통계학회 간행물 : 응용통계연구 31권 1호 발행 연도 : 2018 페이지 : pp. 67-75 (9 pages)

다운로드

(기관인증 필요)

초록보기

다차원척도법은 개체간의 비유사성을 저차원 공간에 기하적으로 표현하기 위한 다변량 자료의 탐색적 분석기법이다. 그러나 일반적인 다차원척도그림에서는 개체들의 유사성 정보만이 표현될 뿐 변수와 관련된 정보가 나타나지 않기 때문에 그림의 해석 상에 한계점이 존재한다. 본 연구에서는 범주형 자료를 다중표시행렬로 변환하고 Torgerson (1958)의 알고리즘에 의한 다차원척도법을 적용하여 개체들의 군집화 성향과 군집들의 상대적 크기를 다차원척도그림으로 시각화하였다. 그리고 Shin 등 (2015)의 분할법을 적용하여 범주형변수의 범주수준별 정보를 다차원척도그림 상에 투영하여 추가적인 정보를 표현하였다. 따라서 본 연구에서 제안하고자 하는 다차원척도그림을 이용하면 개체들의 유사성 정보와 함께 범주형변수들 사이의 연관성도 탐색할 수 있는 장점이 있다.


Multidimensional scaling (MDS) is an exploratory analysis of multivariate data to represent the dissimilar-ity among objects in the geometric low-dimensional space. However, a general MDS map only shows the information of objects without any information about variables. In this study, we used MDS based on the algorithm of Torgerson (Theory and Methods of Scaling, Wiley, 1958) to visualize some clusters of objects in categorical data. For this, we convert given data into a multiple indicator matrix. Additionally, we added the information of levels for each categorical variable on the MDS map by applying the partition method of Shin et al. (Korean Journal of Applied Statistics, 28, 1171{1180, 2015). Therefore, we can find information on the similarity among objects as well as find associations among categorical variables using the proposed MDS map.

KCI등재

6왜도 예측을 이용한 Lee-Carter 모형의 주택연금 리스크 분석

저자 : 이항석 ( Hangsuck Lee ) , 박상대 ( Sangdae Park ) , 백혜연 ( Hyeyoun Baek )

발행기관 : 한국통계학회 간행물 : 응용통계연구 31권 1호 발행 연도 : 2018 페이지 : pp. 77-96 (20 pages)

다운로드

(기관인증 필요)

초록보기

주택연금은 계약기간이 확정되어 있지 않기 때문에 계약 종료 시점에 대한 확률분포 예측이 장수리스크 관리를 위하여 중요하다. 따라서 고령화의 주요인인 기대수명의 연장은 연금 재정건전성에 심각한 영향을 끼칠 수 있기 때문에 사망률의 개선 추세가 적절히 반영된 사망률 예측 연구가 선행될 필요가 있다. 본 연구에서는 Lee-Carter (LC) 모형과 연생모형을 이용하여 주택연금 계리모형에 사망률 개선 효과를 반영하였다. 전통적 LC 모형을 통한 사망률 예측 방식은 미래 사망률이 지나치게 개선되는 현상을 보이고 있기 때문에 사망률 개선효과를 조금 더 적절한 수준으로 보정하고자 본 연구에서는 사망확률 분포의 편중을 나타내는 왜도를 활용한 LC 모형을 적용하였다. 왜도 예측 방식을 LC 모형에 적용한 방법론을 사용하여 주택연금 월 지급금을 산출해본 결과 전통적 LC 모형의 사망률 예측보다 사망률 개선효과를 더 적게 반영하여 더 큰 월 지급금이 산출되었고, 왜도 활용 LC 모형에 의한 이러한 결과는 장수리스크를 덜 왜곡한다는 데 의의가 있다고 볼 수 있다. 본 연구 결과는 사망률 감소 추세를 적절하게 반영한 위험률을 계산하여 주택연금의 발행기관 및 보증기관의 적정한 월 지급금 지급과 차후 월 지급금의 과대지급으로 인한 지급불능을 방지할 수 있는 리스크 관리 방법으로 이용될 수도 있다.


A reverse mortgage provides a pension until the death for the insured or last survivor. Long-term risk management is important to estimate the contractual period of a reverse mortgage. It is also necessary to study prediction methods of mortality rates that appropriately reflect the improvement trend of the mortality rate since the extension of the life expectancy, which is the main cause of aging, can have a serious impact on the pension financial soundness. In this study, the Lee-Carter (LC) model reflects the improvement in mortality rates; in addition, multiple life model are also applied to a reverse mortgage. The mortality prediction method by the traditional LC model has shown a dramatic improvement in the mortality rate; therefore, this study suggests mortality projection based on the projection of the skewness for the mortality that has been applied to appropriately reflect the improvement trend of the mortality rate. This paper calculates monthly payments using future mortality rates based on the projection of the skewness of the mortality. As a result, the mortality rates based on this method less reflect the mortality improvement effect than the mortality rates based on a traditional LC model and a larger pension amount is calculated. In conclusion, this method is useful to forecast future mortality trend results in a significant reduction of longevity risk. It can also be used as a risk management method to pay appropriate monthly payments and prevent insufficient payment due to overpayment by the issuing institution and the guarantee institution of the reverse mortgage.

KCI등재

7다반응 반응표면분석에서 특이값의 영향을 평가하기 위한 불꽃그림

저자 : 김상익 ( Sang Ik Kim ) , 장대흥 ( Dae-heung Jang )

발행기관 : 한국통계학회 간행물 : 응용통계연구 31권 1호 발행 연도 : 2018 페이지 : pp. 97-108 (12 pages)

다운로드

(기관인증 필요)

초록보기

회귀모형을 이용하여 자료를 분석하는 경우 이상점이나 영향점의 유무를 검정하는 회귀진단기법은 모형의 적합성을 체크하기 위한 필수적인 도구이다. 이러한 이상점이나 영향점이 존재하는 경우 회귀분석의 결과가 왜곡되어 해석이 된다. Jang과 Anderson-Cook (Quality and Reliability Engineering International, 30, 1409-1425, 2014)은 불꽃그림이란 이름을 붙인 그래픽 방법를 제시하였는데 관측값에 부여된 가중치를 1에서 0으로 변화함에 따라 이상점이나 영향점이 회귀계수 및 잔차제곱합에 어떠한 영향을 미치는지 살펴 보았다. 본 연구에서는 다반응 반응표면분석에서 이러한 불꽃그림을 적용하여 보고자 한다.


It has been routine practice in regression analysis to check the validity of the assumed model by the use of regression diagnostics tools. Outliers and influential observations often distort the regression output in an undesired manner. Jang and Anderson-Cook (Quality and Reliability Engineering International, 30, 1409-1425, 2014) proposed a graphical method (called a firework plot) so that there could be an exploratory visualization of the trace of the impact of the possible outliers and influential observations on individual regression coefficients and the overall residual sum of the squares measure. This paper further extends a graphical approach to a multi-response surface methodology problem.

KCI등재

8시간에 따라 변화하는 로그-정규분포와 파레토 합성 분포의 모형 추정

저자 : 박소진 ( Sojin Park ) , 백창룡 ( Changryong Baek )

발행기관 : 한국통계학회 간행물 : 응용통계연구 31권 1호 발행 연도 : 2018 페이지 : pp. 109-122 (14 pages)

다운로드

(기관인증 필요)

초록보기

임계값을 기준으로 그 보다 작은 값은 로그정규분포(lognormal distribution; LN)를, 큰 값은 일반화파레토분포(generalized Pareto distribution; GPD)를 따르는 합성 분포를 LN-GPD 합성분포라 한다. Scollnik (2007)은 LN-GPD 합성분포가 로그정규분포와 GPD를 합성 시킴으로써 자료의 손실 없이 꼬리가 두꺼운 분포에서 좋은 적합력을 가진다고 밝혔다. 본 논문에서는 시간에 따라 변하는 LN-GPD 평균모형을 다루었으며 방법론으로는 국소다항최대우도법을 기반으로 추정하는 방법에 대해서 연구하였다. 시간에 따라 변하는 분포를 추정함으로써 자료에 대한 훨씬 자세한 이해가 가능하며 이는 곧 상담원 배치나 자원배분과 같은 운영관리에 큰 도움을 줄 수 있다. 본 연구는 GPD 분포만을 고려한 Beirlant와 Goegebeur (2004)를 확장하여 절삭한 로그정규분포를 추가하여 자료의 손실 없이 자료의 특징을 살펴볼 수 있다는데도 의의가 있다. 모의실험을 통해 제안한 방법론의 적절함을 살펴 보았고 실증 자료 분석으로 이스라엘 은행의 콜센터 서비스 시간에 대해 분석하여 상담원 배치와 관련된 흥미로운 결과를 찾을 수 있었다.


The composite lognormal-generalized Pareto distribution (LN-GPD) is a mixture of right-truncated lognormal and GPD for a given threshold value. Scollnik (Scandinavian Actuarial Journal, 2007, 20-33, 2007) shows that the composite LN-GPD is adequate to describe body distribution and heavy-tailedness. This paper considers time-varying modeling of the LN-GPD based on local polynomial maximum likelihood estimation. Time-varying model provides significant detailed information of time dependent data, hence it can be applied to disciplines such as service engineering for staffing and resources management. Our work also extends to Beirlant and Goegebeur (Journal of Multivariate Analysis, 89, 97-118, 2004) in the sense of losing no data by including truncated lognormal distribution. Our proposed method is shown to perform adequately in simulation. Real data application to the service time of the Israel bank call center shows interesting findings on the staffing policy.

KCI등재

9비선형 혼합효과모형에서의 로버스트 능형회귀 방법과 정량적 고속 대량 스크리닝 자료에의 응용

저자 : 유지선 ( Jiseon Yoo ) , 임창원 ( Changwon Lim )

발행기관 : 한국통계학회 간행물 : 응용통계연구 31권 1호 발행 연도 : 2018 페이지 : pp. 123-137 (15 pages)

다운로드

(기관인증 필요)

초록보기

비선형 혼합효과 모형은 다양한 분야에서 반복 측정 자료를 분석할 때 주로 사용된다. 비선형 혼합효과 모형은 개체 내 변동(intra-individual variation)에 대해 고려하는 제 1단계 개별수준모델(individual-level model)과 개체간 변동(inter-individual variation)에 대해 고려하는 제 2단계 개체군모델(population model)의 두 단계로 구성되어 있다. 비선형 혼합효과 모형의 첫 번째 단계인 개별수준모델은 비선형 회귀모형의 모수를 추정하는 것으로 일반적인 비선형 회귀모형과 같고, 주로 보통최소제곱추정 방법을 사용하여 모수를 추정한다. 그러나 최소제곱추정방법은 가정된 비선형 함수가 자료에 의해 명시적으로 드러나지 않는 경우 모수의 추정값과 그 표준오차가 극단적으로 커지는 문제가 발생할 수 있다. 본 논문에서는 최근에 비선형 회귀모형에서 제안된 능형회귀(ridge regression) 방법을 비선형 혼합효과 모형의 제 1단계 개별수준모델에 도입함으로써 이러한 문제를 해결할 수 있는 새로운 추정방법을 제안하였다. 제안된 추정량은 모의실험 연구를 통하여 기존의 표준적인 추정량과 그 성능을 비교하였다. 또한 미국의 National Toxicology Program으로부터 얻어진 정량적 대량고속 스크리닝(quantitative high throughput screening) 실제 자료를 사용하여 추정 방법들을 비교하였다.


A nonlinear mixed effects model is mainly used to analyze repeated measurement data in various fields. A nonlinear mixed effects model consists of two stages: the first-stage individual-level model considers intra-individual variation and the second-stage population model considers inter-individual variation. The individual-level model, which is the first stage of the nonlinear mixed effects model, estimates the parameters of the nonlinear regression model. It is the same as the general nonlinear regression model, and usually estimates parameters using the least squares estimation method. However, the least squares estimation method may have a problem that the estimated value of the parameters and standard errors become extremely large if the assumed nonlinear function is not explicitly revealed by the data. In this paper, a new estimation method is proposed to solve this problem by introducing the ridge regression method recently proposed in the nonlinear regression model into the first-stage individual-level model of the nonlinear mixed effects model. The performance of the proposed estimator is compared with the performance with the standard estimator through a simulation study. The proposed methodology is also illustrated using quantitative high throughput screening data obtained from the US National Toxicology Program.

KCI등재

10시계열 모형과 기상변수를 활용한 태양광 발전량 예측 연구

저자 : 이근호 ( Keunho Lee ) , 손흥구 ( Heung-gu Son ) , 김삼용 ( Sahm Kim )

발행기관 : 한국통계학회 간행물 : 응용통계연구 31권 1호 발행 연도 : 2018 페이지 : pp. 139-153 (15 pages)

다운로드

(기관인증 필요)

초록보기

최근 정부의 친환경 정책에 따라 태양광 발전 설비가 지속적으로 증가하고 있다. 태양광 발전량은 에너지원인 태양의 특성상 계절에 따라 하루 중 발전이 이루어지는 시간이 일정하지 않다. 이러한 특성으로 인해 태양광 발전량 예측에서는 연속된 시간간격으로 수집된 자료에 적용할 수 있는 시계열 모형 적용에 어려움이 있다. 본 논문에서 제안하는 방법은 연속된 시간자료를 각 시간대 별로 분리, 재구성하여 24개의 (1시{24시) 일별 자료 형태로 예측에 활용하는 방법이다. 강원도 영암 태양광 발전소의 시간별 발전량 자료를 공공데이터포털에서 수집하여 연구하였다. 기존방법과 제안된 방법의 성능차이를 비교하기 위해 ARIMAX, 신경망(neural network model) 모형을 동일한 모형과 변수를 가지는 환경에서 성능차이를 확인하였다.


This paper investigates solar power forecasting based on several time series models. First, we consider weather variables that inuence forecasting procedures as well as compare forecasting accuracies between time series models such as ARIMAX, Holt-Winters and Artificial Neural Network (ANN) models. The results show that ten models forecasting 24hour data have better performance than single models for 24 hours.

12
권호별 보기
가장 많이 인용된 논문

(자료제공: 네이버학술정보)

가장 많이 인용된 논문
| | | |
1연안해역에서 석유오염물질의 세균학적 분해에 관한 연구

(2006)홍길동 외 1명심리학41회 피인용

다운로드

2미국의 비트코인 규제

(2006)홍길동심리학41회 피인용

다운로드

가장 많이 참고한 논문

(자료제공: 네이버학술정보)

가장 많이 참고한 논문

다운로드

2미국의 비트코인 규제

(2006)홍길동41회 피인용

다운로드

해당 간행물 관심 구독기관

연세대학교 고려대학교 경희대학교 서울대학교 이화여자대학교
 89
 73
 53
 48
 47
  • 1 연세대학교 (89건)
  • 2 고려대학교 (73건)
  • 3 경희대학교 (53건)
  • 4 서울대학교 (48건)
  • 5 이화여자대학교 (47건)
  • 6 성균관대학교 (42건)
  • 7 건국대학교 (35건)
  • 8 충북대학교 (31건)
  • 9 부산대학교 (27건)
  • 10 중앙대학교(서울) (25건)

내가 찾은 최근 검색어

최근 열람 자료

맞춤 논문

보관함

내 보관함
공유한 보관함

1:1문의

닫기