논문 상세보기

대한원격탐사학회> 대한원격탐사학회지> 부스팅 기반 기계학습기법을 이용한 지상 미세먼지 농도 산출

KCI등재

부스팅 기반 기계학습기법을 이용한 지상 미세먼지 농도 산출

Estimation of Ground-level PM10 and PM2.5 Concentrations Using Boosting-based Machine Learning from Satellite and Numerical Weather Prediction Data

박서희 ( Seohui Park ) , 김미애 ( Miae Kim ) , 임정호 ( Jungho Im )
  • : 대한원격탐사학회
  • : 대한원격탐사학회지 37권2호
  • : 연속간행물
  • : 2021년 04월
  • : 321-335(15pages)
대한원격탐사학회지

DOI


목차

1. 서론
2. 연구자료
3. 연구방법
3. 결과 및 토론
4. 결론
사사
References

키워드 보기


초록 보기

미세먼지 (PM10) 및 초미세먼지 (PM2.5)는 인체에 흡수 가능하여 호흡기 질환 및 심장 질환과 같이 인체 건강에 악영향을 미치며, 심각할 경우 조기 사망에 영향을 줄 수 있다. 전 세계적으로 현장관측기반의 모니터링을 수행하고 있지만 미 관측지역에 대한 대기질 분포의 공간적인 한계점이 존재하여 보다 광범위한 지역에 대한 지속적이고 정확한 모니터링이 필요한 상황이다. 위성기반 에어로졸 정보를 사용함으로써 이러한 현장 관측자료의 한계점을 극복할 수 있다. 따라서 본 연구에서는 다양한 위성 및 모델자료를 활용하여 2019년도에 대해 한 시간 단위의 지상 PM10 및 PM2.5 농도를 추정하였다. GOCI 위성의 관측영역을 포함하는 동아시아 지역에 대해 트리 기반 앙상블 방법을 사용하는 Boosting 기법인 GBRTs (Gradient Boosted Regression Trees)와 LightGBM (Light Gradient Boosting Machine)을 활용하여 모델을 구축하였다. 또한, 기상변수 및 토지피복변수의 사용유무에 따른 모델의 성능을 비교하기 위해 두 가지 festure set으로 나누어 테스트하였다. 두 기법 모두 주요 변수인 AOD (Aerosol Optical Depth), SSA (Single Scattering Albedo), DEM (Digital Eelevation Model), DOY(Day of Year), HOD (Hour of Day)와 기상변수 및 토지피복변수를 함께 사용한 Feature set 1을 사용하였을 때 높은 정확도를 보였다. Feature set 1에 대해 GBRT 모델이 LightGBM에 비해서약 10%의 정확도 향상을 보였다. 가장 정확도가 높았던 기상 및 지표면 변수를 포함한 Feature set1을 사용한 GBRT기반 모델을 최종모델로 선정하였으며 (PM10: R2 = 0.82 nRMSE = 34.9%, PM2.5: R2 = 0.75 nRMSE = 35.6%), 계절별 및 연평균 PM10 및 PM2.5 농도에 대한 공간적인 분포를 확인해본 결과, 현장관측자료와 비슷한 공간 분포를 보였으며, 국가별 농도 분포와 계절에 따른 시계열 농도 패턴을 잘 모의하였다.
Particulate matter (PM10 and PM2.5 with a diameter less than 10 and 2.5 μm, respectively) can be absorbed by the human body and adversely affect human health. Although most of the PM monitoring are based on ground-based observations, they are limited to point-based measurement sites, which leads to uncertainty in PM estimation for regions without observation sites. It is possible to overcome their spatial limitation by using satellite data. In this study, we developed machine learningbased retrieval algorithm for ground-level PM10 and PM2.5 concentrations using aerosol parameters from Geostationary Ocean Color Imager (GOCI) satellite and various meteorological parameters from a numerical weather prediction model during January to December of 2019. Gradient Boosted Regression Trees (GBRT) and Light Gradient Boosting Machine (LightGBM) were used to estimate PM concentrations. The model performances were examined for two types of feature sets-all input parameters (Feature set 1) and a subset of input parameters without meteorological and land-cover parameters (Feature set 2). Both models showed higher accuracy (about 10 % higher in R2) by using the Feature set 1 than the Feature set 2. The GBRT model using Feature set 1 was chosen as the final model for further analysis (PM10: R2 = 0.82, nRMSE = 34.9 %, PM2.5: R2 = 0.75, nRMSE = 35.6 %). The spatial distribution of the seasonal and annual-averaged PM concentrations was similar with in-situ observations, except for the northeastern part of China with bright surface reflectance. Their spatial distribution and seasonal changes were well matched with in-situ measurements.

UCI(KEPA)

간행물정보

  • : 자연과학분야  > 기타(자연과학)
  • : KCI등재
  • :
  • : 격월
  • : 1225-6161
  • : 2287-9307
  • : 학술지
  • : 연속간행물
  • : 1985-2021
  • : 1640


저작권 안내

한국학술정보㈜의 모든 학술 자료는 각 학회 및 기관과 저작권 계약을 통해 제공하고 있습니다.

이에 본 자료를 상업적 이용, 무단 배포 등 불법적으로 이용할 시에는 저작권법 및 관계법령에 따른 책임을 질 수 있습니다.

37권4호(2021년 08월) 수록논문
최근 권호 논문
| | | |

KCI등재

1Analyzing the Evolution of Summer Thermal Anomalies in Busan Using Remote Sensing and Spatial Statistical Tool

저자 : Nkwain Wilfred Njungwi , Daeun Lee , Minji Kim , Cheonggil Jin , Chuluong Choi

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 4호 발행 연도 : 2021 페이지 : pp. 665-685 (21 pages)

다운로드

(기관인증 필요)

초록보기

This study focused on the a 20-year evaluation of the dynamism of critical thermal anomalies in Busan metropolitan area prompted by unusual infrastructural development and demographic growth rate. Archived Landsat thermal data derived-LST was the major input for UTFVI and hot spot analysis (Getis-Ord Gi). Results revealed that the surface urban heat island-affected area has gradually expanded overtime from 23.32% to 32.36%; while the critical positive thermal anomalies (level-3 hotspots) have also spatially increased from 19.88% in 2000 to 23.56% in 2020, recording a net LST difference of > 5°C between the maximum level-3 hotspot and minimum level-3 coldspot each year. It is been observed that thermal conditions of Busan have gradually deteriorated with time, which is potentially inherent in the rate of urban expansion. Thus, this work serves as an eye-opener to powers that be, to think and act constructively towards a sustainable thermal conform for city dwellers.

KCI등재

2Application of High-spatial-resolution Satellite Images to Monitoring Coral Reef Habitat Changes at Weno Island Chuuk, Micronesia

저자 : Jong-kuk Choi , Joo-hyung Ryu , Jee-eun Min

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 4호 발행 연도 : 2021 페이지 : pp. 687-698 (12 pages)

다운로드

(기관인증 필요)

초록보기

We present quantitative estimations of changes in the areal extent of coral reef habitats at Weno Island, Micronesia, using high-spatial-resolution remote sensing images and field observations. Coral reef habitat maps were generated from Kompsat-2 satellite images for September 2008 and September 2010, yielding classifications with 78.6% and 72.4% accuracy, respectively, which is a relatively high level of agreement. The difference between the number of pixels occupied by each seabed type was calculated, revealing that the areal extent of living corals decreased by 8.2 percentage points between 2008 and 2010. This result is consistent with a comparison of the seabed types determined by field observations. This study can be used as a basis for remediation planning to diminish the impact of changes in coral reefs.

KCI등재

3Analysis of Spectral Reflectance Characteristics Using Hyperspectral Sensor at Diverse Phenological Stages of Soybeans

저자 : Seung-hwan Go , Jin-ki Park , Jong-hwa Park

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 4호 발행 연도 : 2021 페이지 : pp. 699-717 (19 pages)

다운로드

(기관인증 필요)

초록보기

South Korea is pushing for the advancement of crop production technology to achieve food self-sufficiency and meet the demand for safe food. A medium-sized satellite for agriculture is being launched in 2023 with the aim of collecting and providing information on agriculture, not only in Korea but also in neighboring countries. The satellite is to be equipped with various sensors, though reference data for ground information are lacking. Hyperspectral remote sensing combined with 1st derivative is an efficient tool for the identification of agricultural crops. In our study, we develop a system for hyperspectral analysis of the ground-based reflectance spectrum, which is monitored seven times during the cultivation period of three soybean crops using a PSR-2500 hyperspectral sensor. In the reflection spectrum of soybean canopy, wavelength variations correspond with stages of soybean growths. The spectral reflection characteristics of soybeans can be divided according to growth into the vegetative (V) stage and the reproductive (R) stage. As a result of the first derivative analysis of the spectral reflection characteristics, it is possible to identify the characteristics of each wavelength band. Using our developed monitoring system, we observed that the near-infrared (NIR) variation was largest during the vegetative (V1-V3) stage, followed by a similar variation pattern in the order of red-edge and visible. In the reproductive stage (R1-R8), the effect of the shape and color of the soybean leaf was reflected, and the pattern is different from that in the vegetative (V) stage. At the R1 to R6 stages, the variation in NIR was the largest, and red-edge and green showed similar variation patterns, but red showed little change. In particular, the reflectance characteristics of the R1 stage provides information that could help us distinguish between the three varieties of soybean that were studied. In the R7-R8 stage, close to the harvest period, the red-edge and NIR variation patterns and the visible variation patterns changed. These results are interpreted as a result of the large effects of pigments such as chlorophyll for each of the three soybean varieties, as well as from the formation and color of the leaf and stem. The results obtained in this study provide useful information that helps us to determine the wavelength width and range of the optimal band for monitoring and acquiring vegetation information on crops using satellites and unmanned aerial vehicles (UAVs)

KCI등재

4Two-stage Deep Learning Model with LSTM-based Autoencoder and CNN for Crop Classification Using Multi-temporal Remote Sensing Images

저자 : Geun-ho Kwak , No-wook Park

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 4호 발행 연도 : 2021 페이지 : pp. 719-731 (13 pages)

다운로드

(기관인증 필요)

초록보기

This study proposes a two-stage hybrid classification model for crop classification using multi-temporal remote sensing images; the model combines feature embedding by using an autoencoder (AE) with a convolutional neural network (CNN) classifier to fully utilize features including informative temporal and spatial signatures. Long short-term memory (LSTM)-based AE (LAE) is fine-tuned using class label information to extract latent features that contain less noise and useful temporal signatures. The CNN classifier is then applied to effectively account for the spatial characteristics of the extracted latent features. A crop classification experiment with multi-temporal unmanned aerial vehicle images is conducted to illustrate the potential application of the proposed hybrid model. The classification performance of the proposed model is compared with various combinations of conventional deep learning models (CNN, LSTM, and convolutional LSTM) and different inputs (original multi-temporal images and features from stacked AE). From the crop classification experiment, the best classification accuracy was achieved by the proposed model that utilized the latent features by fine-tuned LAE as input for the CNN classifier. The latent features that contain useful temporal signatures and are less noisy could increase the class separability between crops with similar spectral signatures, thereby leading to superior classification accuracy. The experimental results demonstrate the importance of effective feature extraction and the potential of the proposed classification model for crop classification using multi-temporal remote sensing images.

KCI등재

5Analysis of Growth Characteristics Using Plant Height and NDVI of Four Waxy Corn Varieties Based on UAV Imagery

저자 : Chan-hee Jeong , Jong-hwa Park

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 4호 발행 연도 : 2021 페이지 : pp. 733-745 (13 pages)

다운로드

(기관인증 필요)

초록보기

Although waxy corn varieties developed after the 1980s show differences depending on development stages and conditions, studies on the characteristics of waxy corn during the growth stage are rare. The subject of this study was a field survey and unmanned aerial vehicle (UAV) image acquisition of four waxy corn varieties cultivated in Idam-ri, Gammul-myeon, Goesan-gun, Korea. The study was conducted in four stages at intervals of two weeks after planting in 2019. The growth characteristics of each of the four varieties were analyzed using growth curves obtained based on field survey and UAV imagery data. The characteristics of each growth stage of the four varieties of corn, as assessed using normalized difference vegetation index (NDVI) and plant height (P.H.) values, were as follows. The growth model was identified as a model in which three-parameter logistic (3PL) curves reflect the growth characteristics of corn well. In particular, it was found that the variations in growth rate shown by P.H. and NDVI values clearly explain the differences between corn varieties. Among the four cultivars, growth and development first occurred at the early vegetative stage in Daehakchal, followed by Mibaek 2, Miheukchal, and finally Hwanggeummatchal. The variations in P.H. and NDVI were achieved quickly and earlier in Daehakchal, followed by Mibaek 2, Hwanggeummatchal, and Miheukchal. It was confirmed that these results reflected the characteristics of the fast white-type varieties, while the black-type varieties were delayed, as in a previous study. These results reflect the resistance to lodging that affects the cultivation environment and the response characteristics to nutrients and moisture. It was confirmed that UAV accurately provides growth information that is very useful for analyzing the growth characteristics of each corn variety.

KCI등재

6Aerial Dataset Integration For Vehicle Detection Based on YOLOv4

저자 : Wael Omar , Youngon Oh , Jinwoo Chung , Impyeong Lee

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 4호 발행 연도 : 2021 페이지 : pp. 747-761 (15 pages)

다운로드

(기관인증 필요)

초록보기

With the increasing application of UAVs in intelligent transportation systems, vehicle detection for aerial images has become an essential engineering technology and has academic research significance. In this paper, a vehicle detection method for aerial images based on the YOLOv4 deep learning algorithm is presented. At present, the most known datasets are VOC (The PASCAL Visual Object Classes Challenge), ImageNet, and COCO (Microsoft Common Objects in Context), which comply with the vehicle detection from UAV. An integrated dataset not only reflects its quantity and photo quality but also its diversity which affects the detection accuracy.
The method integrates three public aerial image datasets VAID, UAVD, DOTA suitable for YOLOv4. The training model presents good test results especially for small objects, rotating objects, as well as compact and dense objects, and meets the real-time detection requirements. For future work, we will integrate one more aerial image dataset acquired by our lab to increase the number and diversity of training samples, at the same time, while meeting the real-time requirements.

KCI등재

7Establishment of Priority Update Area for Land Coverage Classification Using Orthoimages and Serial Cadastral Maps

저자 : Junyoung Song , Taeyeon Won , Su Min Jo , Yang Dam Eo , Jin Sue Park

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 4호 발행 연도 : 2021 페이지 : pp. 763-776 (14 pages)

다운로드

(기관인증 필요)

초록보기

This paper introduces a method of selecting priority update areas for subdivided land cover maps by training orthoimages and serial cadastral maps in a deep learning model. For the experiment, orthoimages and serial cadastral maps were obtained from the National Spatial Data Infrastructure Portal. Based on the VGG-16 model, 51,470 images were trained on 33 subdivided classifications within the experimental area and an accuracy evaluation was conducted. The overall accuracy was 61.42%. In addition, using the differences in the classification prediction probability of the misclassified polygon and the cosine similarity that numerically expresses the similarity of the land category features with the original subdivided land cover class, the cases were classified and the areas in which the boundary setting was incorrect and in which the image itself was determined to have a problem were identified as the priority update polygons that should be checked by operators.

KCI등재

8Spatial Gap-Filling of Hourly AOD Data from Himawari-8 Satellite Using DCT (Discrete Cosine Transform) and FMM (Fast Marching Method)

저자 : Youjeong Youn , Seoyeon Kim , Yemin Jeong , Subin Cho , Jonggu Kang , Geunah Kim , Yangwon Lee

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 4호 발행 연도 : 2021 페이지 : pp. 777-788 (12 pages)

다운로드

(기관인증 필요)

초록보기

Since aerosol has a relatively short duration and significant spatial variation, satellite observations become more important for the spatially and temporally continuous quantification of aerosol. However, optical remote sensing has the disadvantage that it cannot detect AOD (Aerosol Optical Depth) for the regions covered by clouds or the regions with extremely high concentrations. Such missing values can increase the data uncertainty in the analyses of the Earth's environment. This paper presents a spatial gap-filling framework using a univariate statistical method such as DCT-PLS (Discrete Cosine Transform-based Penalized Least Square Regression) and FMM (Fast Matching Method) inpainting. We conducted a feasibility test for the hourly AOD product from AHI (Advanced Himawari Imager) between January 1 and December 31, 2019, and compared the accuracy statistics of the two spatial gap-filling methods. When the null-pixel area is not very large (null-pixel ratio < 0.6), the validation statistics of DCT-PLS and FMM techniques showed high accuracy of CC=0.988 (MAE=0.020) and CC=0.980 (MAE=0.028), respectively. Together with the AI-based gap-filling method using extra explanatory variables, the DCT-PLS and FMM techniques can be tested for the low-resolution images from the AMI (Advanced Meteorological Imager) of GK2A (Geostationary Korea Multi-purpose Satellite 2A), GEMS (Geostationary Environment Monitoring Spectrometer) and GOCI2 (Geostationary Ocean Color Imager) of GK2B (Geostationary Korea Multi-purpose Satellite 2B) and the high-resolution images from the CAS500 (Compact Advanced Satellite) series soon.

KCI등재

9The Potential of Sentinel-1 SAR Parameters in Monitoring Rice Paddy Phenological Stages in Gimhae, South Korea

저자 : Nawally Umutoniwase , Seung-kuk Lee

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 4호 발행 연도 : 2021 페이지 : pp. 789-802 (14 pages)

다운로드

(기관인증 필요)

초록보기

Synthetic Aperture Radar (SAR) at C-band is an ideal remote sensing system for crop monitoring owing to its short wavelength, which interacts with the upper parts of the crop canopy. This study evaluated the potential of dual polarimetric Sentinel-1 at C-band for monitoring rice phenology. Rice phenological variations occur in a short period. Hence, the short revisit time of Sentinel-1 SAR system can facilitate the tracking of short-term temporal morphological variations in rice crop growth. The sensitivity of SAR backscattering coefficients, backscattering ratio, and polarimetric decomposition parameters on rice phenological stages were investigated through a time-series analysis of 33 Sentinel-1 Single Look Complex images collected from 10th April to 25th October 2020 in Gimhae, South Korea. Based on the observed temporal variations in SAR parameters, we could identify and distinguish the phenological stages of the Gimhae rice growth cycle. The backscattering coefficient in VH polarisation and polarimetric decomposition parameters showed high sensitivity to rice growth. However, amongst SAR parameters estimated in this study, the VH backscattering coefficient realistically identifies all phenological stages, and its temporal variation patterns are preserved in both Sentinel-1A (S1A) and Sentinel-1B (S1B). Polarimetric decomposition parameters exhibited some offsets in successive acquisitions from S1A and S1B. Further studies with data collected from various incidence angles are crucial to determine the impact of different incidence angles on polarimetric decomposition parameters in rice paddy fields.

KCI등재

10Shoreline Changes and Erosion Protection Effects in Cotonou of Benin in the Gulf of Guinea

저자 : Chan-su Yang , Dae-woon Shin , Min-jeong Kim , Won-jun Choi , Ho-kun Jeon

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 4호 발행 연도 : 2021 페이지 : pp. 803-813 (11 pages)

다운로드

(기관인증 필요)

초록보기

Coastal erosion has been a threat to coastal communities and emerged as an urgent problem. Among the coastal communities that are under perceived threat, Cotonou located in Benin, West Africa, is considered as one of the most dangerous area due to its high vulnerability. To address this problem, in 2013, the Benin authorities established seven groynes at east of Cotonou port, and two additional intermediate groynes have recently been integrated in April 2018. However, there is no quantitative analysis of groynes so far, so it is hard to know how effective they have been. To analyze effectiveness, we used optical satellite images from different time periods, especially 2004 and 2020, and then compared changes in length, width and area of shoreline in Cotonou. The study area is divided into two sectors based on the location of Cotonou port. The difference of two areas is that Sector 2 has groynes installed while Sector 1 hasn't. As result of this study, shoreline in Sector 1 showed accretion by recovering 1.20 ㎢ of area. In contrast, 3.67 ㎢ of Sector 2 disappeared due to coastal erosion, although it has groynes. This may imply that groynes helped to lessen the rate of average erosion, however, still could not perfectly stop the coastal erosion in the area. Therefore, for the next step, we assume it is recommended to study how to maximize effectiveness of groynes.

12
권호별 보기
같은 권호 다른 논문
| | | | 다운로드

KCI등재

1소형객체 변화탐지를 위한 화소기반 변화탐지기법의 성능 비교분석

저자 : 서정훈 ( Junghoon Seo ) , 박원규 ( Wonkyu Park ) , 김태정 ( Taejung Kim )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 2호 발행 연도 : 2021 페이지 : pp. 177-198 (22 pages)

다운로드

(기관인증 필요)

초록보기

변화탐지 연구는 주로 토지이용/피복의 변화, 재난/재해 피해지역과 같은 토지의 변화, 수역, 식생과 같은 특정 넓게 분포하는 객체의 변화에 대한 연구가 진행되어 왔다. 한편, 위성영상의 공간/시간 해상도가 지속적으로 향상됨에 따라 위성영상으로부터 선박, 차량과 같은 면적이 작은 객체의 변화탐지의 가능성이 높아지고 있다. 이러한 가능성을 확인하기 위하여 본 논문에서는 위성영상으로부터 소형객체 변화탐지를 수행하기 위해 기존 화소기반 변화탐지기법의 성능을 분석하였다. 10일 이내의 짧은 시기에서 촬영된 Kompsat 3A 위성 영상 및 Google Earth 영상을 이용하여 대표적인 화소기반 변화탐지기법인 차분, 주성분 분석, MAD 및 IRMAD을 적용하였다. 영상에서 관측 가능한 소형 객체 주변으로 변화/비변화 참조자료를 정의하고 각 기법을 적용하여 얻어진 변화탐지 결과영상과 참조자료를 비교하여 성능을 분석하였다. 성능분석 결과 실험에 사용한 모든 영상에서 MAD, IR-MAD 기법이 상대적으로 우수한 성능을 제공하였다. LULC, 식생변화 등 대규모 지역의 변화탐지에 우수한 성능을 보인 MAD, IR-MAD 기법이 소형객체의 변화탐지에도 적용될 수 있음을 확인할 수 있었다. 아울러 변화탐지 대상인 소형객체에 높은 반사율 특성을 가지는 분광밴드를 변화탐지를 위한 분석에 포함하는 것이 소형객체 변화탐지율을 높일 수 있었다.

KCI등재

2벼 수량 자료의 추세분석을 통한 MODIS NDVI 및 기상자료 기반의 벼 수량 추정 모형 개선

저자 : 나상일 ( Sang-il Na ) , 홍석영 ( Suk-young Hong ) , 안호용 ( Ho-yong Ahn ) , 박찬원 ( Chan-won Park ) , 소규호 ( Kyu-ho So ) , 이경도 ( Kyung-do Lee )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 2호 발행 연도 : 2021 페이지 : pp. 199-209 (11 pages)

다운로드

(기관인증 필요)

초록보기

장기적인 시계열 수량 평균이 기술적인 발전 요인에 의해 증가하는 추세를 제거하여, 기존 MODIS NDVI 및 기상자료를 이용한 우리나라 벼 수량 추정 모형을 개선하고자 하였다. 이를 위해 2002년부터 2019년까지의 NDVI (MYD13Q1)와 기상자료를 사용하여 다중 선형 회귀 분석을 수행하였다. 벼 수량 추세를 분석하고 이를 제거하여 모형을 보완하였다. 개선된 모형을 이용하여 추정한 벼 수량과 수량 통계 값 간의 상관 분석을 통해 추세 제거에 따른 정확도를 평가하였다. 그 결과, 추세가 제거된 벼 수량 추정 모형에 의해 예측된 수량이 통계 수량의 연간 변동 특성을 잘 반영하고 있는 것으로 나타났다. 추세 제거 전의 모형과 비교하여 통계 수량과의 상관계수와 결정계수도 높게 나타났다. 따라서 추세 제거 방법이 벼 수량 추정 모형을 효과적으로 보정하는 방법임을 확인하였다.

KCI등재

3기상 조건과 작물 생육상태에 따른 무인기 기반 지표면온도의 관측 정확도 평가

저자 : 류재현 ( Jae-hyun Ryu )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 2호 발행 연도 : 2021 페이지 : pp. 211-220 (10 pages)

다운로드

(기관인증 필요)

초록보기

작물의 생육 상태와 스트레스를 탐지하기 위한 유용한 변수 중 하나인 지표면온도(LST)는 열화상 카메라의 소형화와 무인기(UAV)의 발달로 인해 식생 군락 및 지역적 규모에서 취득할 수 있게 되었다. 무인기에 장착된 열화상 카메라로 관측한 LST(LSTUAV)는 습도, 풍속과 같은 기상인자, 관측기기, 그리고 지표 상태에 따라 영향을 받으나 다양한 기상 조건과 작물의 생육 단계에서 측정된 LSTUAV의 정확도 평가는 부족한 실정이다. 본 연구의 목적은 지상에 고정된 열적외선 센서에서 관측된 LST(LSTGround)를 이용하여 다양한 기상 조건과 작물의 생육 상황에서 LSTUAV의 정확도를 평가하는 것이다. 마늘 작물을 대상으로 LSTUAV 관측을 수행하였으며, 상대습도, 절대습도, 돌풍, 그리고 식생지수에 따른 LSTUAV 정확도를 평가하였다. 센서 간의 편향을 최소화한 경우 상대습도가 60%를 초과하는 조건에서 관측된 LSTUAV의 평균제곱근오차는 2.565°C로 상대습도 60% 이하에서 관측된 LSTUAV의 평균제곱근오차(1.82°C) 보다 정확도가 낮았으며, 절대습도에 대한 결과도 상대습도와 유사했다. 이는 대기 중의 습도가 LSTUAV의 정확도에 영향을 미친다는 것을 의미한다. 따라서 LSTUAV를 관측은 상대습도가 60% 이하의 조건에서 수행되는 것을 권고한다. 반면, 돌풍이나 식생 피복률의 영향은 통계적으로 유의하지 않았다. 이것은 무인기 비행이 안정적으로 가능한 조건에서 LSTUAV는 식생의 상태를 반영한 신뢰성 있는 값을 도출한다는 것을 의미한다. 본 연구의 결과는 농업 분야에서 LSTUAV의 정확도를 이해하고 활용하는 데 도움이 될 것이다.

KCI등재

4KOMPSAT-3/3A 기준영상의 기하품질에 따른 상호좌표등록 결과 분석

저자 : 윤예린 ( Yerin Yun ) , 김태헌 ( Taeheon Kim ) , 오재홍 ( Jaehong Oh ) , 한유경 ( Youkyung Han )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 2호 발행 연도 : 2021 페이지 : pp. 221-232 (12 pages)

다운로드

(기관인증 필요)

초록보기

본 연구는 KOMPSAT-3 및 KOMPSAT-3A호에서 전처리 단계에 따라 구분하여 제공하는 Level 1R 영상과 Level 1G 영상을 이용하여 기준영상의 기하품질에 따른 상호좌표등록 결과 분석을 수행하였다. 기준영상으로 Level 1R 영상 및 1G 영상 각각을 사용하고 대상영상은 Level 1R 영상을 사용하여 상호좌표등록을 수행하였다. 실험을 위해 대전지역에서 촬영된 KOMPSAT-3 및 3A호의 Level 1R, 1G 영상 총 7장을 이용하였다. 상호좌표등록을 수행하기 위해, 우선적으로 특징기반 정합기법인 SURF (Speeded-Up Robust Feature) 기법과 영역기반 정합기법인 위상상관 (Phase Correlation) 기법을 함께 이용한 반복적 정합기법을 통해 두 영상의 기하학적 위치를 개략적으로 일치시켜 주었다. 개략적으로 일치된 영상에서 SURF 기법을 이용하여 정합 쌍을 추출하고 Affine 변환모델과 Piecewise Linear 변환모델을 각각 구성하여 상호좌표등록을 수행하였다. 실험결과, 기하오차가 보정된 Level 1G 영상을 기준영상으로 선정하였을 경우, Level 1R 영상을 이용하였을 때보다 상대적으로 많은 수의 정합쌍을 추출하였다. 또한, 기준영상이 Level 1G 영상일 때의 상호좌표등록 RMSE (Root Mean Square Error) 값이 평균 5화소 미만으로 Level 1R 영상을 이용하였을 때보다 더 낮은 것을 확인하였다. 이는 상호좌표등록 수행 시 두 위성영상 간의 초기위치관계가 상호좌표등록 결과에 영향을 끼칠 수 있음을 의미하며, 기준영상의 기하품질이 우수할수록 안정적인 상호좌표등록 정확도를 나타내는 것을 확인하였다.

KCI등재

5Sentinel-1 InSAR Coherence를 이용한 태양광전지 패널 모니터링 효율화 연구

저자 : 윤동현 ( Donghyeon Yoon ) , 이명진 ( Moungjin Lee ) , 이승국 ( Seungkuk Lee )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 2호 발행 연도 : 2021 페이지 : pp. 233-243 (11 pages)

다운로드

(기관인증 필요)

초록보기

태양광 패널은 중금속을 함유한 전자 폐기물이다. 전 세계적으로 매년 빠르게 증가하고 있으며 집중 강우 시 유실되는 태양광전지 패널은 토양 중금속 오염의 문제 및 소규모 태양광 발전은 관리 부재라는 문제가 있어, 이를 효율적으로 모니터링하기 위한 기술 개발이 요구된다. 본 연구에서는 Sentinel-1 위성의 SAR Temporal Baseline과 Coherence간의 상관관계를 이용한 태양광전지 패널 모니터링 방법을 연구하였다. 또한, 태양광 발전소와 주변의 Coherence 차이를 이용한 태양광전지 패널 탐지를 실험하였다. 실험결과 안정적 산란체로 가정한 태양광전지 패널의 Coherence가 0.50~0.65 분포 0.53의 중앙값으로 치우친 편향을 보이고 있어 처리과정에서 발생될 수 있는 오차를 개선할 추가 연구가 요구된다. 태양광전지 패널의 Coherence 시간적 감소 비율이 건물 등 인공물체와 다름에 따라 시간적 기준선을 이용한 변화탐지가 가능할 것으로 나타났다. 본 연구결과는 기존 광학영상을 활용한 대규모 태양광 발전 시설 위치정보 획득 연구에서, 소규모 태양광전지 패널 모니터링이 가능하도록 영상레이더를 적용한 초기 연구이다. 또한, 본 연구를 바탕으로 지속적 모니터링이 가능하고 태양광전지 패널 유실과 같은 상황에서 공간적 분포를 파악할 수 있는 효율적인 방안이 될 수 있을 것으로 사료된다.

KCI등재

6디지털 산림자원정보 구축을 위한 최적의 지상LiDAR 스캔 경로 분석

저자 : 고치웅 ( Chi-ung Ko ) , 임종수 ( Jong-su Yim ) , 김동근 ( Dong-geun Kim ) , 강진택 ( Jin-taek Kang )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 2호 발행 연도 : 2021 페이지 : pp. 245-256 (12 pages)

다운로드

(기관인증 필요)

초록보기

본 연구는 LiDAR 센서의 산림자원조사 적용성 검토를 위하여 제주 절물자연휴양림을 대상으로 삼나무의 개체목 탐지, 흉고직경과 수고를 측정하여 전통적인 산림자원조사와 정확성과 효율성을 비교·분석하였다. 백팩형 지상라이다(Backpack Personal Laser Scanning; BPLS)는 Greenvalley International 社의 Model D50을 사용하였다. 최적의 데이터 수집을 위하여 표준지의 밀도와 작업 효율성을 고려한 LiDAR스캔의 표본추출방법을 7가지로 구분하였다. 분석은 개체목 변수 측정의 정확성을 파악하고 요소작업별 시간과 전체 분석시간을 조사하여 효율성을 평가하였다. 분석 결과, 백팩형 지상라이다를 이용한 입목 탐지율은 모든 패턴이 100%로 나타났다. 정확성은 패턴5(흉고직경: RMSE: 1.07 cm, Bias: -0.79 cm, 수고: RMSE: 0.95 m, Bias: -3.2 m)와 패턴7(흉고 직경: RMSE: 1.18 cm, Bias: -0.82 cm, 수고: RMSE 1.13 m, Bias: -2.62 m)이 현장조사 방법으로 얻은 결과와 비교하였을 때 통계적 정확성이 높은 결과를 보였다. BPLS와 현장조사를 이용하여 1 ha의 데이터를 처리하는데 걸린 시간을 환산한 결과 BPLS는 약 115분~135분이 소요되며, 현장조사방법은 375분~1,115분으로 BPLS를 이용한 방법이 더 효율적인 것으로 나타났다. 따라서 하층식생이 적고 비교적 관리가 잘 된 인공 침엽수림에서는 BPLS 장비를 활용하여 효율적인 산림자원조사가 가능하며, 앞으로 다양한 임분 조건에서 적용 가능성을 분석할 필요가 있다고 판단된다.

KCI등재

7영상분할 결과 평가 방법의 적용성 비교 분석

저자 : 서원우 ( Won-woo Seo ) , 이규성 ( Kyu-sung Lee )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 2호 발행 연도 : 2021 페이지 : pp. 257-274 (18 pages)

다운로드

(기관인증 필요)

초록보기

고해상도 원격탐사 영상의 객체기반 분석에서 영상분할의 결과는 매우 중요한 부분이지만, 영상분할 품질의 평가는 간과되고 있다. 본 연구에서는 영상분할의 최적 매개변수를 구하기 위한 실용적이고 효율적인 방법을 제시하고자 한다. 영상분할 평가는 크게 무감독 평가, 감독 평가, 그리고 시각적 판독에 의한 정성적 평가로 나눈다. 인천대공원 무인기 다중분광영상에서 추출한 도시 지역과 산림을 대상으로 세 가지 영상분할 평가 방법을 비교하였다. 영상분할 평가 방법은 계산 및 적용의 효율성에 따라 차이가 있지만, 표본영상에 대한 평가 결과 도출된 최적의 매개변수는 세 평가 방법에서 거의 동일하게 나타났다. 영상분할 평가를 통하여 도출된 최적의 매개변수는 도시영상과 산림영상에서 다르게 나타났다. 세 가지 조각 내부변이 척도(V, WV, COV)와 세 가지 조각간 이질성 척도(MI, BSH, DTNP)의 조합을 적용한 무감독 평가로 선정한 최적의 매개변수는 거의 같았다. 무감독 평가를 위한 척도마다 처리 과정의 난이도는 다르지만, 실험에 적용된 여러 종류의 척도는 대부분 동일한 성능을 보여주었다. 감독 평가 방법은 참조자료를 구성하는 과정에서 분석자의 주관으로 편향될 가능성이 있지만, 특정 공간객체를 탐지하는 데 간편하게 적용할 수 있다. 정성적 평가는 무감독 및 감독 평가 결과와 일치했다.

KCI등재

8기계학습을 활용한 동아시아 지역의 TROPOMI 기반 SO2 지상농도 추정

저자 : 최현영 ( Hyunyoung Choi ) , 강유진 ( Yoojin Kang ) , 임정호 ( Jungho Im )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 2호 발행 연도 : 2021 페이지 : pp. 275-290 (16 pages)

다운로드

(기관인증 필요)

초록보기

대기 중의 이산화황(SO2)은 주로 인위적 배출원에 의해 발생하며 화학 반응을 통해 (초)미세먼지를 형성하여 직간접적으로 주변 환경 및 인체 건강에 해로운 영향을 주는 물질이다. 특히 지상에서의 농도는 인간 활동과 밀접한 관련이 있어 모니터링의 필요성이 매우 크다. 따라서, 본 연구에서는 TROPOMI SO2 연직 컬럼 농도 산출물 및 타 위성 산물과 모델 산출물 등을 융합 활용하여 기계학습 기법에 적용하여 SO2 지상 농도 추정모델을 개발하였다. 기계학습 기법으로는 널리 활용되고 있는 RF(Random Forest)에 잔차 보정 과정을 결합한 2-step 잔차 보정 RF를 적용하였다. 개발된 모델은 무작위, 공간 및 시간별 10-fold 교차 검증을 통하여 검증하였으며, 기울기(slope) 값이 1.14-1.25, 상관계수(R) 값이 0.55-0.65, rRMSE 값이 약 58-63% 정도로 나타났다. 이는 잔차 보정이 적용되지 않은 기존의 RF 대비 slope의 경우 약 10%, R과 rRMSE의 경우 약 3% 가량 향상된 결과를 보인다. 국가별로 나누어 분석하였을 때에는 샘플 수가 적고 SO2의 전반적인 농도가 낮은 일본 지역에서의 공간별 10-fold 교차검증 성능이 소폭 감소하는 것으로 나타났다. SO2 지상농도 분포를 계절별로 표출하였을 때, 일본의 경우 다른 지역 대비 연중 저농도가 관찰되며 높은 결측 값 비율로 인하여 관측소 농도 대비 2-step 잔차 보정 RF 모델에서 과대 모의하는 경향이 관찰되었다. 대표적 고농도 발생지인 중국의 YRD(Yangtze River Delta) 와 한국의 SMA(Seoul Metropolitan Area)의 계절적 분포 변화를 추가적으로 분석하였을 때, 연료 연소로 인한 겨울철 농도 증가 패턴이 나타났다. 이는 인위적 배출원의 영향을 크게 받는 SO2의 시공간적인 분포 특성을 잘 반영하고 있는 결과이다. 따라서, 본 연구를 통하여 제안한 모델은 장기적으로 SO2 지상 농도의 시공간적 분포를 파악하는 데에 활용될 수 있을 것으로 기대된다.

KCI등재

9농림위성 활용 수종분류 가능성 평가를 위한 래피드아이 영상 기반 시험 분석

저자 : 권수경 ( Soo-kyung Kwon ) , 김경민 ( Kyoung-min Kim ) , 임중빈 ( Joongbin Lim )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 2호 발행 연도 : 2021 페이지 : pp. 291-304 (14 pages)

다운로드

(기관인증 필요)

초록보기

기후변화나 여러 환경문제들로부터 지속 가능한 산림자원 관리 및 모니터링을 위해 임상도의 지속적인 갱신은 필수적이다. 따라서 효율적이고 광역적인 산림 원격탐사의 필요성에 따라 차세대 중형위성 4호의 사업이 확정되어 2023년 발사 예정에 있다. 농림위성(차세대 중형위성 4호)는 5 m급 공간해상도와 Blue, Green, Red, Red Edge, Near Infra Red 총 5개 밴드를 가진다. 본 연구는 농림위성의 발사 및 활용에 앞서 농림위성과 유사한 사양을 가지는 RapidEye를 이용하여 위성 기반 수종분류의 가능성을 모의 평가하기 수행되었다. 본 연구는 춘천 선도산림경영단지를 연구 대상지로 하였으며, RapidEye 위성 영상기반 모의 수종분류는 생육기 영상으로부터 추출한 분광정보와 생육기와 비생육기의 NIR 밴드로부터 추출한 GLCM 질감특성 정보가 활용되었고, 이를 입력데이터로 하여 랜덤 포레스트(Random Forest) 기법을 적용하였다. 본 연구에서는 침엽수종 3종(소나무, 잣나무, 낙엽송), 활엽수종 5종(신갈나무, 굴참나무, 자작나무, 밤나무, 기타활엽수), 침활혼효림 총 9종으로 임상을 분류하였다. 분류 정확도는 임상도와 분류 결과를 대조하여 산출하였으며, 분류 정확도는 분광정보만 사용한 경우 39.41%, 분광정보과 질감정보를 모두 사용한 경우 69.29%의 정확도를 보였으며, 다중시기 분광정보 및 질감정보의 활용을 통해 5 m 해상도의 위성영상으로부터 수종분류의 가능성이 있음을 확인하였다. 향후 식생의 생태적 특성을 더욱 효과적으로 반영한 추가 변수를 대입하여 농림위성 활용 가능성을 제고하고자 한다.

KCI등재

10SAR 검보정 Site 구축을 위한 후방 산란 특성 분석

저자 : 이태승 ( Taeseung Lee ) , 양도철 ( Dochul Yang )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 2호 발행 연도 : 2021 페이지 : pp. 305-319 (15 pages)

다운로드

(기관인증 필요)

초록보기

다목적실용위성 5호의 검보정 목적으로 사용되는 몽골과 같은 해외 검보정 사이트는 유지 및 보수를 위한 비용이 많이 들고 예상치 못한 문제가 발생할 경우 즉각적인 대응이 어렵다는 단점이 있다. 이에 따라서 국내 SAR 영상 검보정 사이트 구축 필요성이 제기되었지만 관련 연구 진행은 미미한 상황이다. 본 논문에서는 SAR 검보정 사이트 구축을 위해서 후방 산란 특성 측면에서 어떤 조건들이 있는지 알아보고, 실제 운영중인 다목적실용위성 5호를 통해서 고해상도, 표준, 광역 관측과 같이 다양한 모드로 촬영한 국내 후보 지역들에 대해서 검보정 사이트로써 적합한지를 판단하였다. 먼저 국내에서 위성 영상 검보정 후보 사이트로 추천되는 장소 중에서 접근성, 가용성 등 일반적인 지표 만족여부를 적용하여 일차적으로 선별하였다. 그 다음에 비교적 넓고 AT나 CR을 설치하기 용이한 장소로써 site A (전라남도 고흥군), site B (전라북도 전주시), site C (대전광역시 대덕연구단지) 세 군데를 최종 후보 지역으로 선정하였다. 후보 지역들에 대해서 경사도 측정, 방사 정밀도의 평가 지표 중 하나인 ISLR을 구하기 위한 사이트의 최소 면적, SAR 영상에서의 DN 값 및 후방 산란 계수의 균일성, 사이트 내 인공 구조물, 건물 및 바위 등과 같은 strong reflector에 의한 간섭 여부, 설정 영역에 대한 후방 클러터 레벨 분석 등을 통해서 전라남도 고흥군에 위치한 site A 지역이 검보정 사이트로써 가장 적합하다고 판단 내릴 수 있었다.

12
발행기관 최신논문
자료제공: 네이버학술정보
발행기관 최신논문
자료제공: 네이버학술정보

내가 찾은 최근 검색어

최근 열람 자료

맞춤 논문

보관함

내 보관함
공유한 보관함

1:1문의

닫기